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348. (b) Syppose that f(x) is a real-valued function defined for real values of x. Suppose that both f(x)−3x
and f(x)−x3 are increasing functions. Must f(x)−x−x2 also be increasing on all of the real numbers,
or on at least the positive reals?

360. Eliminate θ from the two equations
x = cot θ + tan θ

y = sec θ − cos θ ,

to get a polynomial equation satisfied by x and y.

361. Let ABCD be a square, M a point on the side BC, and N a point on the side CD for which BM = CN .
Suppose that AM and AN intersect BD and P and Q respectively. Prove that a triangle can be
constructed with sides of length |BP |, |PQ|, |QD|, one of whose angles is equal to 60◦.

362. The triangle ABC is inscribed in a circle. The interior bisectors of the angles A, B, C meet the circle
again at U , V , W , respectively. Prove that the area of triangle UV W is not less than the area of triangle
ABC.

363. Suppose that x and y are positive real numbers. Find all real solutions of the equation
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364. Determine necessary and sufficient conditions on the positive integers a and b such that the vulgar
fraction a/b has the following property: Suppose that one successively tosses a coin and finds at one
time, the fraction of heads is less than a/b and that at a later time, the fraction of heads is greater than
a/b; then at some intermediate time, the fraction of heads must be exactly a/b.

365. Let p(z) be a polynomial of degree greater than 4 with complex coefficients. Prove that p(z) must have
a pair u, v of roots, not necessarily distinct, for which the real parts of both u/v and v/u are positive.
Show that this does not necessarily hold for polynomials of degree 4.

366. What is the largest real number r for which
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holds for all positive real values of x, y, z for which xyz = 1.
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