Solutions

Notes. A partition of the positive integer n is a representation (up to order) of n as a sum of not necessarily distinct positive integers, i.e., $n=a_{1}+a_{2}+\cdots+a_{k}$ with $a_{1} \geq a_{2} \geq \cdots \geq a_{k} \geq 1$. The number of distinct partitions is denoted by $p(n)$. Thus, $p(6)=11$ since 6 can be written as $6=5+1=4+2=$ $4+1+1=3+3=3+2+1=3+1+1+1=2+2+2=2+2+1+1=2+1+1+1+1=1+1+1+1+1+1$.

Sources. 234. Bulgarian math competitions - selected problems, Tonov I. et al, Regalia-6, Sofia, 2001. 235, 236. Junior Balkan Math Olympiad, 2002. 237. Balkan Math Olympiad, 2002. 238, 239. Mathematics Plus, issues 3, 4, 2002, Sofia, 240. National Mathematical Olympiad, 1999, Bulgaria, Regional Round.
234. A square of side length 100 is divided into 10000 smaller unit squares. Two squares sharing a common side are called neighbours.
(a) Is it possible to colour an even number of squares so that each coloured square has an even number of coloured neighbours?
(b) Is it possible to colour an odd number of squares so that each coloured square has an odd number of coloured neighbours?

Solution. [Y. Zhao] (a) Yes, it is possible in many ways to perform the task. For example, colour any two nonadjacent squares, and both of them will have zero coloured neighbours. So there are evenly many (2) coloured squares, each with an even number (0) of coloured neighbours.
(b) Suppose, if possible, we could colour an odd number of squares so that each has an odd number of coloured neighbours. Let us count the number of segments or edges that connect two coloured neighbours. Since for each coloured square there is an odd number of coloured neighbours, then the total number of their common sides is the sum of an odd number of odd terms, and so is odd. However, two coloured neighbours share each of these common edges, therefore each coloured neighbour is counted twice in the sum; thus, the sum should be even. This is a contradiction. So, it is impossible to colour an odd number of squares so that each has an odd number of coloured neighbours.
235. Find all positive integers, N, for which:
(i) N has exactly sixteen positive divisors: $1=d_{1}<d_{2}<\cdots<d_{16}=N$;
(ii) the divisor with the index d_{5} (namely, $d_{d_{5}}$) is equal to $\left(d_{2}+d_{4}\right) \times d_{6}$ (the product of the two).

Solution. There are some preliminary easy observations:
(1) Since N has exactly sixteen positive divisors and d_{5} is an index, $d_{5} \leq 16$. On the other hand, d_{6} is a proper divisor of $d_{d_{5}}$, so $d_{6} \leq d_{d_{5}}$. Thus $6<d_{5} \leq 16$.
(2) If N were odd, all its factors would be odd. But, by (ii), the factor $d_{d_{5}}$ would be the product of an even and an odd number, and so be even. But this would given N an even divisor and lead to a contradiction.
(3) Recall that, if $N=\prod p_{i}^{k_{i}}$ is the prime factor decomposition, then the number of all divisors, including 1 and N is $\prod\left(1+k_{i}\right)$. [To understand this formula, think how we can form any of the divisors of N; we have to choose its prime factors, each to any of the possible exponents. For an arbitrary prime factor p_{i} there are $\left(1+k_{i}\right)$ possibility for the exponent (from 0 to k_{i} inclusive). In particular, the factor 1 corresponds to taking all exponents 0 , and N to taking all exponents to be the maximum k_{i}.] It can be checked that there are five cases for the prime factorization of N; (i) $N=p^{15}, N=p_{1}^{7} p_{2}$; (iii) $N=p_{1}^{3} p_{2} p_{3}$; (iv) $N=p_{1}^{3} p_{2}^{3}$; (v) $N=p_{1} p_{2} p_{3} p_{4}$.

We now put all of this together, and follow the solution of K.-C. R. Tseng. From (1), $d_{2}=2$.
If d_{4} is composite (i.e. not a square), then $d_{4}=2 d_{3}$ is even. Since $d_{2}+d_{4}$ divides a factor $d_{d_{5}}$ of N, it divides N. Since $d_{2}+d_{4}=2\left(1+d_{3}\right), 1+d_{3}$ divides N. But then $1+d_{3}$ would equal $d_{4}=2 d_{3}$, which is impossible. If d_{4} were a perfect square, then it must equal either 4 or 9 (since $d_{4}<d_{5} \leq 16$). In either case, $d_{3}=3$, and 6 must be one of the factors. This excludes the possibility that $d_{4}=9$, since 6 should preceded

9 in the list of divisors. On the other hand, if $d_{4}=4$, then d_{5} must be equal to either 5 or 6 , which is not possible by (1).

Hence, d_{4} must be a prime number, and so one of $3,5,7,11,13$. Since $d_{3} \geq 3, d_{4} \neq 3$.
Suppose that $d_{4}=5$. Then $d_{2}+d_{4}=7$ must divide N. Thus d_{5} or d_{6} must be 7 . If $d_{5}=7$, then $d_{3} \neq 3$, for otherwise 6 would be a factor between d_{4} and d_{5}. But then $d_{3}=4$, so that $N=2^{2} \cdot 5 \cdot 7 \cdot K$ where K is a natural number. But N must have 16 divisors, and the only way to obtain this is to have 2^{3} rather than 2^{2} in the factorization. Thus, $d_{6}=8$ and $d_{7}=10$. But then $d_{d_{5}}=d_{7} \neq\left(d_{2}+d_{4}\right) d_{6}$. So $d_{5}=7$ is rejected and we must have $d_{6}=7$. This entails that $d_{5}=6$. But this denies the equality of $d_{6}=d_{d_{5}}$ and $\left(d_{2}+d_{4}\right) d_{6}$. We conclude that $d_{4} \neq 5$.

Suppose that $d_{4}=7$. Then $d_{2}+d_{4}=9$ is a factor of N, so $d_{3}=3$. Then 6 must be a factor of N; but there is not room for 6 , and this case is impossible.

Suppose that $d_{4}=11$. Then $d_{2}+d_{4}=13$ divides N, and is either d_{5} (when 12 is not a factor) or d_{6} (when 12 is a factor). If $d_{5}=13$, then d_{3} is either a prime number less than 11 or 4 . It cannot be 3 , as there is no room to fit the divisor 6 . If $d_{3}=4$, then $N=2^{2} \cdot 11 \cdot 13 \cdot K$ and the only way to get 16 divisors is for the exponent of 2 to be 3 . Thus, 8 divides N, but there is no room for this divisor. Similarly, if $d_{5}=5$, there is no room for 10 .

Finally (with $d_{4}=11, d_{5}=13$), if $d_{3}=7$, we already have four prime divisor of N, and this forces $N=2 \cdot 7 \cdot 11 \cdot 13=2002$. We have that the divisors in increasing order are $1,2,7,11,13,14,22,26,77,91$, $143,154,182,286,1001,2002$, and all the conditions are satified.

When $d_{4}=11, d_{6}=13$, then $d_{5}=12$, so that $3,4,6$ are all factors of N; but there is no room for them between d_{2} and d_{4}.

The remaining case is that $d_{4}=13$, which makes $d_{2}+d_{4}=15$ a factor of N; but there is no room for both 3 and 5 between d_{2} and d_{4}. We conclude that $N=2002$ is the only possibility.
236. For any positive real numbers a, b, c, prove that

$$
\frac{1}{b(a+b)}+\frac{1}{c(b+c)}+\frac{1}{a(c+a)} \geq \frac{27}{2(a+b+c)^{2}} .
$$

Solution. [G.N. Tai] Apply the AM-GM Inequality to get

$$
\begin{gathered}
\frac{1}{b(a+b)}+\frac{1}{c(b+c)}+\frac{1}{a(c+a)} \geq 3 \sqrt[3]{\frac{1}{a b c(a+b)(b+c)(c+a)}} \\
a+b+c \geq 3 \sqrt[3]{a b c} \\
a+b+c=\frac{1}{2}((a+b)+(b+c)+(c+a)) \geq \frac{3}{2} \sqrt[3]{(a+b)(b+c)(c+a)} .
\end{gathered}
$$

Multiplying these inequalities together and dividing by $(a+b+c)^{2}$ yields the result. Equality occurs if and only if $a=b=c$.
237. The sequence $\left\{a_{n}: n=1,2, \cdots\right\}$ is defined by the recursion

$$
\begin{array}{cl}
a_{1}=20 & a_{2}=30 \\
a_{n+2}=3 a_{n+1}-a_{n} & \text { for } n \geq 1 .
\end{array}
$$

Find all natural numbers n for which $1+5 a_{n} a_{n+1}$ is a perfect square.
Solution. [R. Marinov] The first few terms of the sequence are 20, 30, 70, 180, 470, 1230. Observe that

$$
0=\left(a_{n+1}-a_{n-1}\right)\left(a_{n+1}+a_{n-1}-3 a_{n}\right) \Leftrightarrow a_{n+1}^{2}-3 a_{n+1} a_{n}=a_{n-1}^{2}-3 a_{n} a_{n-1}
$$

so that

$$
a_{n+1}^{2}-3 a_{n} a_{n+1}+a_{n}^{2}=a_{n}^{2}-3 a_{n-1} a_{n}+a_{n-1}^{2}
$$

for $n \geq 2$. Hence $a_{n+1}^{2}-3 a_{n+1} a_{n}+a_{n}^{2}$ is a constant for $N \geq 2$, and its value is $30^{2}-2 \cdot 30 \cdot 20+20^{2}=-500$.
Now, $1+5 a_{n} a_{n+1}=501-500+5 a_{n} a_{n+1}=501+\left(a_{n+1}+a_{n}\right)^{2}$ for each $n \geq 1$. Since $1+5 a_{n} a_{n+1}=k^{2}$ is equivalent to

$$
3 \times 167=501=\left(k-\left(a_{n+1}+a_{n}\right)\right)\left(k+\left(a_{n+1}-a_{n}\right)\right.
$$

we must have that either (i) $A-\left(a_{n+1}+a_{n}\right)=1$ and $A+\left(a_{n+1}+a_{n}\right)=501$ or (ii) $A-\left(a_{n+1}+a_{n}\right)=3$ and $A+\left(a_{n+1}+a_{n}\right)=167$. The second possibility leads to $a_{n+1}+a_{n}=82$ which is not divisible by 10 and so cannot occur. The first possibility leads to $a_{n+1}+a_{n}=250$, which occurs when $n=3$. Since the sequence is increasing (prove this!), this is the only possibility.
238. Let $A B C$ be an acute-angled triangle, and let M be a point on the side $A C$ and N a point on the side $B C$. The circumcircles of triangles $C A N$ and $B C M$ intersect at the two points C and D. Prove that the line $C D$ passes through the circumcentre of triangle $A B C$ if and only if the right bisector of $A B$ passes through the midpoint of $M N$.

Note: Figures 1, 2, 3 accompany this solution.
Solution. Denote the circumcentres of the triangles $A B C, A N C$ and $B M N$ by O, O_{1} and O_{2} respectively. Denote also their circumcircles by K, K_{1} and K_{2} respectively, and the radii of these circles by R, R_{1} and R_{2} respectively. (See figure 1.) The common chord $C D$ of K_{1} and K_{2} is perpendicular to $O_{1} O_{2}$. Thus, $O \in C D \Longleftrightarrow C O \perp O_{1} O_{2}$.

We prove two lemmata.
Lemma 1. Let M_{1} be the perpendicular projection of the point M onto $A B$ and N_{1} the projection of the point N onto $A B$. The right bisector of $A B$, the line $S_{A B}$, passes through the midpoint of $M N$ if and only if $A N_{1}=B M_{1}$. (See figure 2.)

Proof. Note that $M M_{1} N_{1} N$ is a trapezoid with bases parallel to $S_{A B}$. Recall that the midline of a trapezoid has the following property: the segment that connects the midpoints of the two nonparallel sides is parallel to the bases and its length is the average of the lengths of the two parallel sides. As a direct consequence, a line passing through one of the midpoints of the two nonparallel sides and is parallel to the bases must pass through the midpoint of the other side. Applying this yields that $S_{A B}$ passes through the midpoint of $M N$ if and only if $S_{A B}$ passes through the midpoint of $M_{1} N_{1}$. Since $S_{A B}$ intersects $A B$ at its midpoint, this is equivalent to $S_{A B}$ passes through the midpoint of $M_{1} N_{1} \Leftrightarrow A B$ and $M_{1} N_{1}$ have the same midpoint, which is equivalent to $A M_{1}=B N_{1}$ or $A N_{1}=B M_{1}$

Lemma 2. The diagonals d_{1} and d_{2} of the quadrilateral $P Q R S$ are perpendicular if and only if its sides a, b, c, d satisfy the relationship $a^{2}+c^{2}=b^{2}+d^{2} .((a, c)$ and (b, d) are pairs of opposite sides.)

Proof. (To follow the steps of the proof, please draw an arbitrary convex quadrilateral $P Q R S$ with the respective lengths of $S R, R Q, Q P$ and $P S$ given by a, b, c and d.) Let d_{1} and d_{2} intersect at I, and let

$$
\angle P I Q=\theta, \quad|I P|=t, \quad|I Q|=z, \quad|I R|=y, \quad|I S|=x
$$

The Law of Cosines applied to triangles $P Q I, Q R I, R S I$ and $S P I$ yields

$$
\begin{aligned}
a^{2} & =x^{2}+y^{2}-2 x y \cos \theta \\
c^{2} & =z^{2}+t^{2}-2 z t \cos \theta \\
b^{2} & =y^{2}+z^{2}+2 y z \cos \theta \\
d^{2} & =x^{2}+t^{2}+2 x t \cos \theta
\end{aligned}
$$

As $a^{2}+c^{2}=b^{2}+d^{2}$ is equivalent to $(x y+z t+y z+x t) \cos \theta=0$, or $\cos \theta=0$, the result follows.

Let us return to the problem. Consider (in figure 1) the quadrilateral $C O_{1} O O_{2}$. We already know from the foregoing that

- $C D$ passes through $O \Leftrightarrow C O \perp O_{1} O_{2}$;
- $C O \perp O_{1} O_{2} \Leftrightarrow O_{1} C^{2}+O O_{2}^{2}=O_{2} C^{2}+O O_{1}^{2}$;
- $A N_{1}=B M_{1} \Leftrightarrow S_{A B}$ passes through the midpoint of $M N$.

So to complete the solution, it is necessary to prove that

$$
O_{1} C^{2}+O O_{2}^{2}=O_{2} C^{2}+O O_{1}^{2} \Longleftrightarrow A N_{1}=B M_{1}
$$

From the Law of Cosines,

$$
O O_{1}^{2}=O_{1} C^{2}+O C^{2}-2 O_{1} C \cdot O C \cdot \cos \angle O_{1} C O
$$

and

$$
O O_{2}^{2}=O_{2} C^{2}+O C^{2}-2 O_{2} C \cdot O C \cdot \cos \angle O_{2} C O
$$

from which

$$
\left.O_{1} C^{2}+O O_{2}^{2}=O_{2} C^{2}+O O_{1}^{2}-2 O C \cdot\left(O_{2} C \cos \angle O_{2} C O\right)-O_{1} C \cos \angle O_{1} C O\right)
$$

We need to establish that (i) $\angle O_{1} C O=\angle N A B$ and (ii) $\angle O_{2} C O=\angle M B A$. (See figure 3.) Ad (i), $\angle A O_{1} N=2 \angle A C N=2 \alpha$ and $\angle C O_{1} N=2 \angle C A N=2 \beta$, say, so that $\angle C O_{1} A=2(\alpha+\beta)$. The common chord $C A$ of K_{1} and K is right bisected by $O_{1} O$, so that $\angle C O_{1} A=2 \angle C O_{1} O$ and $\angle C O_{1} O=\alpha+\beta$. On the other hand, $\angle C O O_{1}=\frac{1}{2} \angle C O A=\angle C B A=\gamma$, say. Hence, $\angle O_{1} C O=180^{\circ}-(\alpha+\beta+\gamma)$. Also, $\angle A N B=\alpha+\beta$ and $\angle N A B=180^{\circ}-(\alpha+\beta+\gamma)=\angle O_{1} C O$. Similarly, (ii) can be shown.

From the extended Law of Sines involving the circumradius, we have that $2 R_{1}=A N / \sin C$ and $2 R_{2}=$ $M B / \sin C$. It follows that

$$
\begin{aligned}
& O_{2} C \cos \angle O_{2} C O-O_{1} C \cos \angle O_{1} C O=0 \\
& \Leftrightarrow R_{2} \cdot \cos \angle M B A-R_{1} \cdot \cos \angle N A B=0 \\
& \Leftrightarrow M B \cos \angle M B A=A N \cos \angle N A B .
\end{aligned}
$$

However, $M B \cos \angle M B A=B M_{1}$ and $A N \cos \angle N A B=A N_{1}$ (the lengths of the projections on $A B$). The result now follows, that $C D$ passes through O if and only if $S_{A B}$ passes through the midpoint of $M N$.
239. Find all natural numbers n for which the diophantine equation

$$
(x+y+z)^{2}=n x y z
$$

has positive integer solutions x, y, z.
Solution. Let $(n ; x, y, z)=(n ; u, v, w)$ be a solution of the equation. Then the quadratic equation

$$
t^{2}+(2 u+2 v-n u v) t+(u+v)^{2}=0
$$

has two solutions, w and a second one w^{\prime} for which $w w^{\prime}=(u+v)^{2}>0$ (product of the roots). Since $w+w^{\prime}=-(2 u+2 v-n u v)$, an integer, w^{\prime} must be a positive integer, and so $(n ; x, y, z)=\left(n ; u, v, w^{\prime}\right)$ is a solution of the equation. If $w>(u+v)$, then $w^{\prime}<(u+v)$. It follows that, if there is a solution, we can repeat the process long enough using any two of the three variables as fixed to always find solutions $(n ; x, y, z)$ of the equation for which $z \leq x+y, y \leq x+z$ and $x \leq x+y$. So we impose this additional restriction in our search. Wolog, we can also suppose that $1 \leq x \leq y \leq z$.

Suppose $x=1$. Since $z \leq x+y=1+y,(x, y, z)=(1, r, r)$ or $(1, r, r+1)$. The first leads to $(2 r+1)^{2}=n r^{2}$ or $1=r(n r-4 r-4)$, whence $(n ; r)=(9,1)$. The second leads to $4(r+1)^{2}=n r(r+1)$, or $4=(n-4) r$; this yields $(n ; r)=(8 ; 1),(6 ; 2),(5 ; 4)$. Thus, the four solutions with $x=1$ are

$$
(n ; x, y, z)=(5 ; 1,4,5),(6 ; 1,2,3) ;(8 ; 1,1,2) ;(9 ; 1,1,1)
$$

Suppose $x \geq 2$. Then

$$
n x y z=(x+y+z)(x+y+z) \leq(z+z+z)(x+y+x+y)=6 z(x+y)
$$

so that $n x y \leq 6(x+y)$. Rearranging the terms and adding 36 to both sides yields

$$
(n x-6)(n y-6) \leq 36
$$

Since $2 \leq x \leq y$, we find that $(2 n-6)(2 n-6) \leq 36$ so that $0 \leq n \leq 6$. Checking turns up the additional solutions

$$
(n ; x, y, z)=(1 ; 9,9,9),(2 ; 4,4,8) ;(3 ; 3,3,3) ;(4 ; 2,2,4)
$$

Thus, the only natural numbers n for which a solution exists are $1,2,3,4,5,6,8,9$.
240. In a competition, 8 judges rate each contestant "yes" or "no". After the competition, it turned out, that for any two contestants, two judges marked the first one by "yes" and the second one also by "yes"; two judges have marked the first one by "yes" and the second one by "no"; two judges have marked the first one by "no" and the second one by "yes"; and, finally, two judges have marked the first one by "no" and the second one by "no". What is the greatest number of contestants?

Solution. Let n be the number of contestants. Then, the marks of the judges for each of them can be recorded in a column of eight zeros or ones, as follows: there is a 1 on the i th position of the number if the i th judge has marked this contestant by "yes" and there is a 0 in this position if the i th judge has marked this contestant by "no". This way, the information about the marks of the contestants will be recorded in an $n \times 8$ table. Now, the given condition implies that the 2×8 table formed by any two columns of the above table has exactly two rows of each of $00,01,10,11$. Denote this property by $(*)$. We will now show that eight columns with any pair having this property do not exist.

Suppose the contrary, and consider a table with eight columns. Interchanging 1 and 0 in any column does not change the property $(*)$, so, wolog, we can assume that the first row consists solely of 0 s. Let there be $a_{i} 0$ s in the i th row. Then $\sum_{i=1}^{8} a_{i}=8 \times 4=32$ and $\sum_{i=2}^{8} a_{i}=32-8=24$. Next, we will count the number of pairs of two 0 s that can appear in the lines of the table in two different ways.
(i) In the i th row, there are $a_{i} 0 \mathrm{~s}$. We can choose two of them in $\binom{a_{i}}{2}$ ways, so the number of possible pairs in all rows is $\sum_{i=1}^{8}\binom{a_{i}}{2}$.
(ii) There are 8 columns. We can choose two of them in $\binom{8}{2}=28$ ways. In each selection, there are exactly two rows with 00 , so that all the ways to get combinations of two 0 s is $2 \times 28=56$. Thus,

$$
\sum_{i=1}^{8}\binom{a_{i}}{2}=56
$$

We have that

$$
\begin{aligned}
\sum_{i=1}^{8}\binom{a_{i}}{2} & =\frac{a_{1}\left(a_{1}-1\right)}{2}+\sum_{i=2}^{8} \frac{a_{i}\left(a_{i}-1\right)}{2} \\
& =28-\frac{1}{2} \sum_{i=2}^{8} a_{i}+\frac{1}{2} \sum_{i=2}^{8} a_{i}^{2}=28-12+\frac{1}{2} \sum_{i=2}^{8} a_{i}^{2}
\end{aligned}
$$

from which $\sum_{i=2}^{8} a_{i}^{2}=2(56-28+12)=80$. From the ineqaulity of the root mean square and the arithmetic mean, we have that

$$
\frac{a_{2}^{2}+\cdots+a_{8}^{2}}{7} \geq\left(\frac{a_{2}+\cdots+a_{8}}{7}\right)^{2}=\frac{576}{49}
$$

whence $80=\sum_{i=2}^{8} a_{i}^{2} \geq 576 / 7>82$, which is false. Therefore, we must conclude that there cannot be eight columns with condition $(*)$. However, we can realize this condition with a table of seven columns:

0	0	0	0	0	0	0
0	1	1	1	1	0	0
0	1	1	0	0	1	1
0	0	0	1	1	1	1
1	0	1	0	1	0	1
1	0	1	1	0	1	0
1	1	0	0	1	1	0
1	1	0	1	0	0	1

Thanks to Emil Kolev, Sofia, Bulgaria for this problem.

