
Solutions

Notes. A partition of the positive integer n is a representation (up to order) of n as a sum of not
necessarily distinct positive integers, i.e., n = a1 + a2 + · · ·+ ak with a1 ≥ a2 ≥ · · · ≥ ak ≥ 1. The number
of distinct partitions is denoted by p(n). Thus, p(6) = 11 since 6 can be written as 6 = 5 + 1 = 4 + 2 =
4+1+1 = 3+3 = 3+2+1 = 3+1+1+1 = 2+2+2 = 2+2+1+1 = 2+1+1+1+1 = 1+1+1+1+1+1.

241. Determine sec 40◦ + sec 80◦ + sec 160◦.

Solution 1. The values 40◦, 80◦ and 160◦ all satisfy cos 3θ = −1/2, or 8 cos3 θ − 6 cos θ + 1 = 0. Thus,
cos 40◦. cos 80◦ and cos 160◦ are the roots of the cubic equation 8x3 − 6x + 1 = 0, so that their reciprocals
sec 40◦, sec 80◦ and sec 160◦ are the roots of the cubic equation x3 − 6x2 + 8 = 0. The sum of the roots of
this cubic is

sec 40◦ + sec 80◦ + sec 160◦ = 6 .

Solution 2. Let z = cos 40◦+ i sin 40◦. Then z9 = 1. In fact, since z9−1 = (z−1)(z2 +z+1)(z6 +z3 +1)
and the first two factors fail to vanish, z6+z3+1 = 0. Also 1+z+z2+ · · ·+z8 = (1+z+z2)(1+z3+z6) = 0.
Observe that cos 40◦ = 1

2 (z + 1
z ), cos 80◦ = 1

2 (z2 + 1
z2 ) and cos 160◦ = 1

2 (z4 + 1
z4 ), so that the given sum is

equal to

2
[

z

1 + z2
+

z2

1 + z4
+

z4

1 + z8

]
= 2

[
z

1 + z2
+

z2

1 + z4
+

z5

1 + z

]
= 2

[
z(1 + z + z4 + z5) + z2(1 + z + z2 + z3) + z5(1 + z2 + z4 + z6)

(1 + z)(1 + z2)(1 + z4)

]
= 2

[
z7 + z6 + 3z5 + z4 + z3 + 3z2 + z + 1

(1 + z)(1 + z2)(1 + z4)

]
= 2

[
(z + 1)(z6 + z3 + 1) + 3z2(z3 + 1)

(1 + z)(1 + z2)(1 + z4)

]
= 2

[
0− 3z8

1 + z + z2 + z3 + z4 + z5 + z6 + z7

]
= 2

[
−3z8

−z8

]
= 6 .

Solution 3. [T. Liu]

sec 40◦ + sec 80◦ + sec 160◦ =
cos 40◦ + cos 80◦

cos 40◦ cos 80◦ +
1

cos 160◦

=
2 cos 60◦ cos 20◦

cos 40◦ cos 80◦ +
1

cos 160◦

=
cos 20◦ cos 160◦ + cos 40◦ cos 80◦

cos 40◦ cos 80◦ cos 160◦

=
cos 180◦ + cos 140◦ + cos 120◦ + cos 40◦

cos 40◦(cos 240◦ + cos 80◦)

=
−1− 1/2

(1/2)(− cos 40◦ + cos 120◦ + cos 40◦)
=
−3/2
−1/4

= 6 .

Solution 4. Let x = cos 40◦, y = cos 80◦ and z = cos 160◦. Then

x + y + z = 2 cos 60◦ cos 20◦ − cos 20◦ = 0

and
xy + yz + zx =

1
2
[cos 120◦ + cos 140◦ + cos 240◦ + cos 80◦ + cos 200◦ + cos 120◦]

=
1
2

[
− 3

2
+ x + y + z

]
= −3

4
.
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Now
8 sin 40◦ cos 40◦ cos 80◦ cos 160◦ = 4 sin 80◦ cos 80◦ cos 160◦

= 2 sin 160◦ cos 160◦ = sin 320◦ = − sin 40◦

so that xyz = −1/8. Then the sum of the problem is equal to (xy + yz + zx)/(xyz) = 6.

242. Let ABC be a triangle with sides of length a, b, c oppposite respective angles A, B, C. What is the
radius of the circle that passes through the points A, B and the incentre of triangle ABC when angle
C is equal to (a) 90◦; (b) 120◦; (c) 60◦. (With thanks to Jean Turgeon, Université de Montréal.)

Solution. 6 AIB = 180◦− 1
2 (6 BAC + 6 ABC) = 90◦ + 1

2
6 C, an obtuse angle. Hence, the side AB of the

circle through A, I, B subtends an angle of 180◦− 6 C at the centre of the circle, so that its radius has length
c/(2 sin(90◦ − C/2)) = c/(2 cos C/2). The radius is equal to c/

√
2, c and c/

√
3 when 6 C = 90◦, 120◦, 60◦

respectively.

Comment. a diameter of the circumcircle of ABI is the line joining I to the centre of the escribed circle
on side AB.

243. The inscribed circle, with centre I, of the triangle ABC touches the sides BC, CA and AB at the
respective points D, E and F . The line through A parallel to BC meets DE and DF produced at
the respective points M and N . The midpoints of DM and DN are P and Q respectively. Prove that
A,E, F, I, P, Q lie on a common circle.

Solution 1. Since AF ⊥ FI and AE ⊥ EI, AEIF is concyclic. Since ∆ANF ∼ ∆BDF and BD = BF ,
then AF = AN , Similarly, AE = AM , and so A is the midpoint of NM . Thus, AP‖ND and so

6 APE = 6 APM = 6 NDM = 6 FDE =
1
2
6 FIE = 6 AIE

and AEPI is concyclic. Similarly AFQI is concyclic. Thus P,Q, I all lie on the circle (with diameter AI)
through A, E and F .

Solution 2. [T. Yue] Let AQ produced meet CB at R. Then AQ = QR and NQ = QD, so that RD =
AN = AE =⇒ CR = CD + DR = CE + AE = CA. Therefore ∆CAR is isosceles with median CQ. Hence
CQ ⊥ AR and Q lies on the angle bisector of 6 ACR. Thus, I,Q,C are collinear with 6 IQA = 6 IFA = 90◦.
Hence AFQIE is concyclic. Also AFPIE is conclyclic and the result follows.

Solution 3. Recall that the nine-point circle of a triangle is that circle that contains the midpoints of the
sides, the pedal points (feet of altitudes) and the midpoints of the segments joining the orthocentre to the
vertices. We show that the six points in question lie on the nine-point circle of triangle MND; indeed, that
A,P, Q are the midpoints of the sides, F,E are pedal points and I is the midpoint of the segment joining
the orthocentre and D.

ID ⊥ AM , AF ⊥ IF , AF = AM , FI = ID and 6 FAM = 180◦ − 6 NAF = 180◦ − 6 FBD = 6 FID.
Hence ∆FAM ∼ ∆FID and we can transform ∆FAM to ∆FID by a composite of a rotation about F
through 90◦ and a dilation with factor |IF |/|FA|. Hence MF ⊥ ND and so F is a pedal point of ∆DMN .
Similarly, E is a pedal point. [An alternative argument can be had by noting that A,M,F, E lie on a circle
with centre A and diameter NM , so that right angles are subtended at E and F by NM .]

Produce DI to meet the incircle again at H. Since 6 DFH = 90◦, H lies on FM . Similarly, H lies on
EN , so that H is the orthocentre of ∆AMN , and I is the midpoint of DH. The result follows.

244. Let x0 = 4, x1 = x2 = 0, x3 = 3, and, for n ≥ 4, xn+4 = xn+1 + xn. Prove that, for each prime p, xp is
a multiple of p.

Solution. The recursion is satisfied by the sequences whose nth terms are any of an, bn, cn, dn, where
a, b, c, d are the roots of the quartic equation t4 − t− 1 = 0, and so it is satisfied by un = an + bn + cn + dn.
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Observe that u0 = 4, u1 = a + b + c + d = 0 (the sum of the roots), u2 = a2 + b2 + c2 + d2 = (a + b + c +
d)2 − 2(ab + ac + ad + bc + bd + cd) = 0− 0 = 0 and

u3 = (a3 + b3 + c3 + d3)

= (a + b + c + d)3 − 3(a + b + c + d)(ab + ac + ad + bc + bd + cd) + 3(abc + abd + acd + bcd)
= 0− 0 + 3 = 3 .

[To check the last, begin with the easier observation that

(x3 + y3 + z3)− (x + y + z)3 + 3(x + y + z)(xy + yz + zx)− 3xyz ≡ 0

and note that

(a3 + b3 + c3 + d3)− (a + b + c + d)3 + 3(a + b + c + d)(ab + ac + ad + bc + bd + cd)− 3(abc + abd + acd + bcd)

is a polynomial of degree 3 in four variables that vanishes when any of a, b, c, dequals 0; by the factor theorem,
it is divisible by abcd. This can happen only if it is identically 0.] Thus, the sequences {xn} and {un} agree
for n = 0, 1, 2, 3 and so agree at every index n.

Let p be a prime. Then

0 = (a + b + c + d)p = ap + bp + cp + dp + pf(a, b, c, d)

from the multinomial expansion, where f(a, b, c, d) is a symmetric polynomial that can be written as a
polynomial in the symmetric functions s1 = a+b+c+d, s2 = ab+ac+ad+bc+bd+cd, s3 = abc+abd+acd+bcd,
s4 = abcd, each of which is an integer. Thus, ap + bp + cp + dp = −pf(a, b, c, d), where f(a, b, c, d) is an
integer and the result follows.

245. Determine all pairs (m,n) of positive integers with m ≤ n for which an m × n rectangle can be tiled
with congruent pieces formed by removing a 1× 1 square from a 2× 2 square.

Solution 1. The tiling can be done for all pairs (m,n) of positive integers for which m ≥ 2, n ≥ 2, and
either (1) (m,n) = (2, 3k), (3k, 2), (3, 2k), (2k, 3) for some positive integer k, or (2) m ≥ 4, n ≥ 4, provided
mn is a multiple of 3.

Since each tile is made up of three unit squares, the area of each rectangle must be a multiple of 3, so
that 3|mn. The tiling is impossible if either m or n is equal to 1. If m or n equals 2, then the other variable
must be a multiple of 3. Suppose, say, the number of rows m equals 3, and let n = 2k + 1. Colour the k + 1
odd unit squares (counting from the end) in each of the top and bottom rows. It is impossible for a tile to
cover more than one coloured square, so that at least 2(k + 1) tiles are necessary. But since the area of the
rectangle is 3(2k + 1), we do not have room for this many tiles. Thus, if m or n equals 3, the other variable
must be even.

We show that the tiling is possible in each of the cases cited. Note that two tiles can be combined to
form a 3 × 2 or 2 × 3 rectangle, so any rectangle that has one dimension divisible by 3 and the other even
can be tiled. In particular, 6× 3, 6× 2, 2× 6, 3× 6 rectangles can be tiled, and by combining these, we can
tile any rectangle one of whose dimensions is a multiple of 6 and the other dimension exceeds 1.

Suppose that m = 6k + 3 where k ≥ 1. If we can tile a 9× n rectangle, then by appending tiled 6× n
rectangles, we can tile a (6k + 3) × n rectangle. A 9 × n rectangle can be tiled when n is even; a 9 × 3
rectangle cannot be tiled, but a 9× 5 rectangle can be tiled (exercise: do it!). It can be deduced that a 9×n
rectangle can be tiled when n = 2 or n ≥ 4. By symmetry, we see that an m × (6k + 3) rectangle can be
tiled whenever m ≥ 4 and k ≥ 1.

246. Let p(n) be the number of partitions of the positive integer n, and let q(n) denote the number of
finite sets {u1, u2, u3, · · · , uk} of positive integers that satisfy u1 > u2 > u3 > · · · > uk such that
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n = u1 + u3 + u5 + · · · (the sum of the ones with odd indices). Prove that p(n) = q(n) for each positive
integer n.

For example, q(6) counts the sets {6}, {6, 5}, {6, 4}, {6, 3}, {6, 2}, {6, 1}, {5, 4, 1}, {5, 3, 1}, {5, 2, 1},
{4, 3, 2}, {4, 3, 2, 1}.

Solution. A partition of the natural number n can be illustrated by a Ferrars diagram, in which there
are several rows of symbols, left justified, each row containing no more symbols than the row above it and
the numbers of symbols in each row giving a number in the partition, ordered from largest to smallest. For
example, if n = 15, the partition 15 = 7 + 4 + 3 + 1 is represented by the diagram

x x x x x x x
x x x x
x x x
x

There is a one-one correspondence between partitions of n and diagrams of n symbols in which each row
contains no more symbols than its predecessor. We can also get n symbols by counting the symbols in each
gnomon (indicated by a, b, c in the diagram below), so that in the present example 15 = 10 + 4 + 1.

a a a a a a a
a b b b
a b c
a

The difficulty is that, if we specify the lengths of the gnomons, there are several possibilities for placing
the gnomons to give us a Ferrars diagram. So we need a way of specifying exactly which element of the
gnomon is at the turning point. One way to do this is to get a measure of the number of vertical elements
in the gnomon, which, we achieve by counting for each gnomon after the first, the elements in the vertical
shaft along with the elements above and to the right in the horizontal shaft of the previous gnomon; this is
indicated by the symbols y and z in the diagram:

x y y y y y y
x y z z
x y z
x

So we insert in the sum 10 + 4 + 1 the lengths of these hybrid gnomons to get 10 + 8 + 4 + 3 + 1 where the
even terms count the number of y’s and z’s. On the other hand, given such a sum, we can reconstruct the
diagram uniquely.

In the general situation, given a partition of n, construct its Ferrars diagram. To construct a sum
counted by q(n), the first term counts the number of symbols in the upper left gnomon, the second the
number of symbols in the gnomon formed by the second column and the top row to the right of the first
column, the third the number of symbols in the gnomon formed by the second column below the first row
and the second row to the right of the first column, and so on. On the other hand, given a sum counted
by q(n), we can construct a Ferrars diagram as follows. If the last term is an evenly indexed term, make a
horizontal row of that number of symbols; if it is oddly indexed, make a vertical column of that number of
symbols to form the lowest rightmost gnomon of the diagram. Now work along the sum from right to left.
At each evenly indexed summand, to get the gnomon for the next term to the left, extend the top row by
one symbol to the left and make it part of a gnomon with the number of terms of the next summand to
the left; at each oddly indexed summand, to get the gnomon for the next term to the left, extend the lect
column by one symbol up and make it part of a gnomon with the number of terms of the next summand
to the left. In this way, we obtain a one-one correspondence between partitions counted by p(n) and finite
sequences counted by q(n).

In the example of the problem, we get the correspondence [6; {6, 5}], [5 + 1; {6, 4}]; [4 + 2; {5, 4, 1}],
[4 + 1 + 1; {6, 3}]; [3 + 3; {4, 3, 2}], [3 + 2 + 1; {5, 3, 1}]; [3 + 1 + 1 + 1; {6, 2}]; [2 + 2 + 2; {4, 3, 2}]; [2 + 2 +
1 + 1; {5, 2, 1}]; [2 + 1 + 1 + 1 + 1; {6, 1}]; [1 + 1 + 1 + 1 + 1 + 1; {6}].
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247. Let ABCD be a convex quadrilateral with no pairs of parallel sides. Associate to side AB a point T
as follows. Draw lines through A and B parallel to the opposite side CD. Let these lines meet CB
produced at B′ and DA produced at A′, and let T be the intersection of AB and B′A′. Let U, V,W be
points similarly constructed with respect to sides BC, CD, DA, respectively. Prove that TUV W is a
parallelogram.

Solution. [T. Yin] Let AB and CD produced intersect at Y . Suppose A′ and B′ are defined as in the
problem. Let the line through C parallel to AD meet AB produced at B′′ and the lines through B parallel
to AD meet CD produced at C ′, so that U is the intersection of BC and B′′C ′. Let P be the intersection
of AB′ and BC ′ and Q the intersection of A′B and B′′C. Then A′B‖AB′‖CD and AD‖BC ′‖B′′C, so that
APBA′ and CQBC ′ are parallelograms. Hence

BT : TA = A′B : AB′ = AP : AB′ = Y C ′ : Y C

and
BU : UC = BC ′ : B′′C = Y B : Y B′ .

Since also Y B : Y B′′ = Y C ′ : Y C, BT : TA = BU : UC and TU‖AC. Similarly, V W‖AC, TU‖BD,
UW‖BD and so TUV W is a parallelogram.
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