
Solutions

199. Let A and B be two points on a parabola with vertex V such that V A is perpendicular to V B and θ is
the angle between the chord V A and the axis of the parabola. Prove that

|V A|
|V B|

= cot3 θ .

Comment. A lot of students worked harder on this problem than was necessary. It should be noted that
all parabolas are similar (as indeed all circles are similar); this means that you can establish a general result
about parabolas by dealing with a convenient one. Let us see why this is so. One definition of a parabola
is that it is the locus of points that are equidistant from a given point (called the focus) and a given line
(called the directrix) that does not contain the point. Any point-line pair can be used, and each such pair
can be transformed into another by a similarity transformation. (Translate one point on to the other, make
a rotation to make the two lines parallel and perform a dilation about the point that makes the two lines
coincide.) The same transformation will take the prabola defined by one pair to the parabola defined by the
other. You should point out in your solution that there is no loss of generality in taking the particular case
of a parabola whose equation in the plane is y = ax2. But you do not have to be even that general; it is
enough to assume that the parabola has the equation y = x2 or x = y2. (Exercise: Determine the focus and
the directrix for these parabolas.) Some of the solvers did not appear to be aware that parabolas need not
have vertical or horizontal axes; the axis of a parabola can point in any direction.

Solution. Wolog, suppose that the parabola is given by y2 = x, so that its vertex is the origin and its
axis is the x−axis. Suppose A ∼ (u, v) is a point on the parabola whose radius vector makes an angle θ with
the axis; then v/u = tan θ. Hence 1/u = v2/u2 = tan2 θ, so that A ∼ (cot2 θ, cot θ). Similarly, it can be
shown that B ∼ (tan2 θ,− tan θ). Hence

|V A|2

|V B|2
=

cot2 θ(cot2 θ + 1)
tan2 θ(tan2 θ + 1)

= cot6 θ ,

and the result follows.

200. Let n be a positive integer exceeding 1. Determine the number of permutations (a1, a2, · · · , an) of
(1, 2, · · · , n) for which there exists exactly one index i with 1 ≤ i ≤ n− 1 and ai > ai+1.

Comment. Some solvers found it difficult to appreciate what was going on in this problem. It is often a
good beginning strategy to actually write out the appropriate permutations for low values of n. This does
two things for you. First, it gives you a sense of what goes into constructing the right permutations and so
how your argument can be framed. Secondly, it gives you some data against which you can check your final
answer.

Solution 1. For n ≥ 1, let pn be the number of permutations of the first n natural numbers that satisfy
the condition. Suppose that ai = n for some i with 1 ≤ i ≤ n− 1. Then (a1, a2, · · · , ai−1) and (ai+1, · · · , an)
must both be in increasing order, so that the appropriate permutation is determined uniquely once its first
i− 1 entries are found. There are

(
n−1
i−1

)
ways of choosing these entries. If an = n, then there are pn−1 ways

of ordering the first n− 1 numbers to give an appropriate permutation. Hence

pn =
[ n−1∑
i=1

(
n− 1
i− 1

)]
+ pn−1 = 2n−1 − 1 + pn−1 .

Thus, substituting for each pi in turn, we have that

pn = (2n−1 − 1) + (2n−2 − 1) + · · ·+ (22 − 1) + (2− 1) + (1− 1) = 2n − 1− n = 2n − (n+ 1) .
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Solution 2. [H. Li; M. Zaharia] For n ≥ 2, let pn be the number of acceptable permutations. We have
that p2 = 1. Consider first the placing of the numbers 1, 2, · · · , n− 1 in some order. If they appear in their
natural order, then we can slip in n before any one of them to get an acceptable permutation; there are n−1
ways of doing this. If there exists a single consecutive pair (r, s) of numbers for which r < s and r follows
s, then we can slip n between s and r or at the end to get an acceptable permutation. There are 2pn−1

possibilities. If there is more than one pair (r, s) of consecutive pairs with r < s and r following s, then no
placement of n will yield an acceptable permutation. Hence

pn = 2pn−1 + (n− 1)

so that
pn + n+ 1 = 2(pn−1 + n) = 22(pn−2 + n− 1)

= · · · = 2n−2(p2 + 3) = 2n−2 · 4 = 2n ,

whence pn = 2n − (n+ 1).

Solution 3. [R. Barrington Leigh] Let 1 ≤ k ≤ n − 1 and let (x, y) be a pair of integers for which
1 ≤ y < x ≤ n and x − y = k. There are n − k such pairs, (1, k + 1), (2, k + 2), · · · , (n − k, k). For each
such pair, we consider suitable permutations for which x and y are adjacent in the order (x, y). Then the
numbers 1, 2, · · · , y − 1 must precede and x + 1, · · · , n must follow the pair. The remaining k − 1 numers
from x+ 1 to x+ k− 1 = y− 1 can go either before or after the pair; there are 2k−1 possibilities. Once it is
decided whether each of these goes before or after the pair, there is only one possible arrangement. Hence
the number of permutations of the required type is

n−1∑
k=1

(n− k)2k−1 =
n−1∑
k=1

[(n− k + 1)2k − (n− k + 2)2k−1]

=
n−1∑
k=1

[(n− k − 1)2k − (n− k − 2)2k−1

= 2 · 2n−1 − (n+ 1) = 2n − (n+ 1) .

Solution 4. Let 1 ≤ i ≤ n − 1 and consider the number of suitable permutations for which ai > ai+1.
There are

(
n
i

)
possible choices of {a1, a2, · · · , ai} with a1 < a2 < · · · < ai, and except for the single case of

{1, 2, · · · , i}, the maximum element ai of each of them exceeds the minimum element ai+1 of its complement
{ai+1, · · · , an}. Hence the number of permutations is

n−1∑
i=1

[(
n

i

)
− 1
]

=
n∑
i=0

[(
n

i

)
− 1
]

= 2n − (n+ 1) .

Solution 5. (Variant of Solution 4.) We can form an acceptable permutation in the following way. Let
1 ≤ k ≤ n. Select any subset of k numbers in one of

(
n
k

)
ways and place them in ascending order at the

beginning of the arrangement and place the other n − k at the end, again in ascending order. This fails to
work only when the set chosen is {1, 2, · · · , k}. Hence the total number of ways is

n∑
k=1

[(
n

k

)
− 1
]

=
[ n∑
k=1

(
n

k

)]
− n = (2n − 1)− n .

201. Let (a1, a2, · · · , an) be an arithmetic progression and (b1, b2, · · · , bn) be a geometric progression, each of
n positive real numbers, for which a1 = b1 and an = bn. Prove that

a1 + a2 + · · ·+ an ≥ b1 + b2 + · · ·+ bn .
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Solution 1. The result is obvious if a1 = an = b1 = bn, as then all of the ai and bj are equal. Suppose
that the progressions are nontrivial and that the common ratio of the geometric progression is r 6= 1. Observe
that

(rn−1 + 1)− (rn−k + rk−1) = (rk−1 − 1)(rn−k − 1) > 0 .

Then
b1 + b2+ · · ·+ bn = b1(1 + r + r2 + r3 + · · ·+ rn−1)

=
b1
2

n∑
k=1

(rn−k + rk−1)

<
b1n

2
(rn−1 + 1) =

n

2
[b1rn−1 + b1]

=
n

2
[bn + b1] =

n

2
[an + a1] = a1 + a2 + · · ·+ an .

Solution 2. For 1 ≤ r ≤ n, we have that

br = b
(n−r)/(n−1)
1 b(r−1)/(n−1)

n

= a
(n−r)/(n−1)
1 a(r−1)/(n−1)

n

≤ n− r
n− 1

a1 +
r − 1
n− 1

an = ar ,

by the arithmetic-geometric means inequality.

202. For each positive integer k, let ak = 1 + (1/2) + (1/3) + · · ·+ (1/k). Prove that, for each positive integer
n,

3a1 + 5a2 + 7a3 + · · ·+ (2n+ 1)an = (n+ 1)2an −
1
2
n(n+ 1) .

Solution 1. Observe that, for 1 ≤ k ≤ n,

(2k + 1) + (2k + 3) + · · ·+ (2n+ 1) = (1 + 3 + · · ·+ 2n+ 1)− (1 + 3 + · · ·+ 2k − 1) = (n+ 1)2 − k2 .

Then

3a1 + 5a2 + 7a3+ · · ·+ (2n+ 1)an

= (3 + 5 + · · ·+ 2n+ 1) · 1 + (5 + 7 + · · ·+ 2n+ 1) ·
(

1
2

)
+ · · ·+ (2n+ 1)

(
1
n

)
=

n∑
k=1

[(n+ 1)2 − k2]
(

1
k

)
= (n+ 1)

n∑
k=1

1
k
−

n∑
k=1

k

= (n+ 1)2an −
1
2
n(n+ 1) .

Solution 2. Observe that for each positive integer k ≥ 2,

[(k + 1)2ak −
1
2
k(k + 1)]− [k2ak−1 −

1
2

(k − 1)k]

= k2(ak − ak−1) + (2k + 1)ak −
1
2
k(k + 1− k − 1)

= k2(1/k) + (2k + 1)ak − k = (2k + 1)ak .
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Hence
3a1 + 5a2+ · · ·+ (2n+ 1)an

= 3a1 +
n∑
k=2

{[(k + 1)2ak −
1
2
k(k + 1)]− [k2ak−1 −

1
2

(k − 1)k]}

= 3a1 + [(n+ 1)2an −
1
2
n(n+ 1)]− [4a1 − 1]

= (n+ 1)2an −
1
2
n(n+ 1) + 1− a1 = (n+ 1)2an −

1
2
n(n+ 1) .

Solution 3. We use an induction argument. The result holds for k = 1. Suppose it holds for n = k−1 ≥ 1.
Then

3a1 + 5a2+ · · ·+ (2k − 1)ak−1 + (2k + 1)ak

= k2ak−1 −
1
2
k(k − 1) + (2k + 1)ak

= k2

(
ak −

1
k

)
− 1

2
k(k − 1) + (2k + 1)ak

= (k + 1)2ak − [k +
1
2
k(k − 1)]

= (k + 1)2ak −
1
2
k(k + 1) .

Solution 4. [R. Furmaniak] Let a0 = 0, Then ai = ai−1 + (1/i) for 1 ≤ i ≤ n, so that

n∑
i=1

(2i+ 1)ai =
n∑
i=1

[(i+ 1)2 − i2]ai

=
n∑
i=1

[(i+ 1)2ai − i2ai−1 − i2(1/i)]

= (n+ 1)2an − a0 −
n∑
i=1

i = (n+ 1)2an −
1
2
n(n+ 1) .

Solution 5. [A. Verroken] Let a0 = 0. For n ≥ 1,

(n+ 1)2an =
n∑
k=0

(2k + 1)an

=
n∑
k=0

(2k + 1)
[
ak +

(
1

k + 1
+

1
k + 2

+ · · ·+ 1
n

)]

=
n∑
k=1

(2k + 1)ak +
n−1∑
k=0

(2k + 1)
(

1
k + 1

+
1

k + 2
+ · · ·+ 1

n

)

=
n∑
k=1

(2k + 1)ak +
n−1∑
k=0

(
1

k + 1

)
(1 + 3 + · · ·+ (2k + 1))

=
n∑
k=1

(2k + 1)ak +
n−1∑
k=0

(
1

k + 1

)
(k + 1)2

from which the result follows. (To see the second last equality, write out the sums and instead of summing
along the 2k + 1, sum along the 1/(k + 1).]
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Solution 6. [T. Yin] Recall Abel’s Partial Summation Formula:

n∑
k=1

ukvk = (u1 + u2 + · · ·+ un)vn −
n−1∑
k=1

(u1 + u2 + · · ·+ uk)(vk+1 − vk) .

(Prove this. Compare with integration by parts in calculus.) Applying this to uk = 2k + 1 and vk = ak, we
find that u1 + · · ·+ uk = (k + 1)2 − 1 and vk+1 − vk = 1/(k + 1), whereupon

n∑
k=1

(2k + 1)ak = (n+ 1)2an − an −
n−1∑
k=1

(k + 1) +
n−1∑
k=1

1
k + 1

= (n+ 1)2an − an −
[
n(n+ 1)

2
− 1
]

+ [an − 1]

= (n+ 1)2an −
n(n+ 1)

2
.

203. Every midpoint of an edge of a tetrahedron is contained in a plane that is perpendicular to the opposite
edge. Prove that these six planes intersect in a point that is symmetric to the centre of the circumsphere
of the tetrahedron with respect to its centroid.

Solution 1. Let O be the centre of the circumsphere of the tetrahedron ABCD and G be its centroid.
Then

−−→
OG =

1
4

(−→OA+−−→OB +−−→OC +−−→OD) .

Let N be the point determined by

−−→
ON = 2−−→OG =

1
2

(−→OA+−−→OB +−−→OC +−−→OD) .

Let P be the midpoint of the edge AB. Then

−−→
PN = −−→ON −−−→OP = −−→ON − 1

2
(−→OA+−−→OB) =

1
2

(−−→OC +−−→OD)

and
−−→
PN · −−→CD =

1
2

(−−→OD +−−→OC) · (−−→OD +−−→OC) =
1
2

(|−−→OD|2 − |−−→OC|2) = 0 .

Hence −−→PN ⊥ −−→CD, so that the segment PN is contained in a plane that is orthogonal to CD. A similar
result holds for the other five edges. The result follows.

Solution 2. [O. Bormashenko] Let O be the circumcentre and let G be the centroid of the tetrahedron.
Let M be the midpoint of the edge AB and N the midpoint of the edge CD. The centroid of the triangle
ABC lies at a point E on MC for which CE = 2EM , so that CM = 3EM . The centroid of the tetrahedron
is the position of the centre of gravity when unit masses are placed at its vertices, and so is the position of
the centre of gravity of a unit mass placed at D and a triple mass at E. Thus G is on DE and satisfies
DG = 3GE.

Consider triangle CDE. We have that

CM

ME
· EG
GD
· DN
NC

= (−3) ·
(

1
3

)
· 1 = −1 ,

so that, by the converse to Menelaus’ Theorem, G,M and N are collinear. Consider triangle MCN and
transversal DGE. By Menelaus’ Theorem,

−1 =
ME

EC
· CD
DN

· NG
GM

=
(

1
2

)
· (−2) · NG

GM
,
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whence NG = GM and G is the midpoint of MN .

Suppose that K is the point on OG produced so that OG = GK. Since OK and MN intersect in G
at their respective midpoints, OMKN is a planar parallelogram and ON‖KM . Since OC = OD, triangle
OCD is isosceles, and so ON ⊥ CD. Hence KM ⊥ CD. Therefore, K lies on the plane through the midpoint
M of AB and perpendicular to CD. By symmetry, K lies on the other planes through the midpoints of an
edge and perpendicular to the opposite edge.

204. Each of n ≥ 2 people in a certain village has at least one of eight different names. No two people have
exactly the same set of names. For an arbitrary set of k names (with 1 ≤ k ≤ 7), the number of people
containing at least one of the k names among his/her set of names is even. Determine the value of n.

Solution 1. Let P be a person with the least number of names. The remaining n − 1 people have at
least one of the names not possessed by P , so by the condition of the problem applied to the set of names
not possessed by P , n− 1 is even and so n is odd. Let x be one of the eight names, and suppose, if possible,
that no person has x as his/her sole name. Then all n people have at least one of the remaining names which
yields the contradiction that n must be even. Hence, for each name, there is a person with only that name.
Suppose there is no person with only a pair {x, y} of names. Then there are n− 2 people who have a name
other than x and y, which yields again a contradiction, since n − 2 is odd. Hence, for each pair of names,
there is exactly one person possessing those two names.

We can continue the argument. Suppose, if possible, there is no person possessing exactly the three
names x, y and z. Then except for the six people with the name sets {x}, {y}, {z}, {x, y}, {y, z}, {z, x},
everyone possesses at least one of the names other than x, y, z, which leads to a contradiction. Eventually,
we can argue that, for each nonvoid set of the eight names, there is exactly one person with that set of
names. Since there are 255 = 28 − 1 such subsets, there must be 255 people.

Solution 2. [R. Furmaniak] For 1 ≤ i ≤ 8, let Si be the set of people whose names include the ith name.
By the condition of the problem for k = 1, the cardinality, #Si, of Si must be even. Suppose, for 2 ≤ k ≤ 7,
it has been shown that any intersection of fewer than k of the Si has even cardinality.

Consider an intersection of k of the Si, say S1 ∩ S2 ∩ · · · ∩ Sk. By the condition of the problem,
#(S1 ∪ S2 ∪ · · · ∪ Sk), the number of people with at least one of the first k names, is even. But, from the
Principle of Inclusion-Exclusion, we have that

#(S1 ∪ S2 ∪ · · · ∪ Sk) =
k∑
i=1

#Si −
∑
i 6=j

#(Si ∩ Sj) +
∑
i,j,k

#(Si ∩ Sj ∩ Sk)− · · ·+ (−1)k#(S1 ∩ S2 ∩ · · · ∩ Sk) .

By the induction hypothesis, each term in the series on the right but the last is even, and so the last is even
as well.

Consider the largest set of names, say {i1, · · · , ir} possessed by any one person. This set can appear
only once, so that ∩rj=1Sij is a singleton. By the above paragraph, the intersection must have eight members
(no fewer) and so some person possesses all eight names.

If a set of names does not belong to any person, let T be a maximal such set with k ≤ 7 names, say the
first k names. By maximality, each superset of T be be a set of names for someone. The supersets consist
of the k names along with all of the 28−k − 1 possible subsets of the remaining names. But the superset of
names are possessed by all the people in S1 ∩ S2 ∩ · · · ∩ Sk, and this set has even cardinality and so cannot
have cardinality 28−k− 1. This is a contradiction. Thus every possible nonvoid set of names must occur and
n = 28 − 1.

205. Let f(x) be a convex realvalued function defined on the reals, n ≥ 2 and x1 < x2 < · · · < xn. Prove
that

x1f(x2) + x2f(x3) + · · ·+ xnf(x1) ≥ x2f(x1) + x3f(x2) + · · ·+ x1f(xn) .
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Solution 1. The case n = 2 is obvious. For n = 3, we have that

x1f(x2)+x2f(x3) + x3f(x1)− x2f(x1)− x3f(x2)− x1f(x3)
= (x3 − x2)f(x1) + (x2 − x1)f(x3)− (x3 − x1)f(x2)

= (x3 − x1)
[

(x3 − x2)
(x3 − x1)

f(x1) +
(x2 − x1)
(x3 − x1)

f(x3)− f(x2)
]
≥ 0 .

Suppose, as an induction hypothesis, that the result holds for all values of n up to k ≥ 3. Then

x1f(x2) + x2f(x3) + · · ·+ xkf(xk+1) + xk+1f(xk)
= [x1f(x2) + · · ·+ xkf(x1)] + [xkf(xk+1) + xk+1f(x1)− xkf(x1)]
≥ [x2f(x1) + · · ·+ x1f(xk)] + [xk+1f(xk) + x1f(xk+1)− x1f(xk)]
= x2f(x1) + · · ·+ xk+1f(xk) + x1f(xk+1) ,

by the result for n = k and n = 3.

Solution 2. [J. Kramar] For 1 ≤ i ≤ n, let λi = (xi−x1)/(xn−x1), so that 0 = λ1 ≤ λ2 ≤ · · · ≤ λn−1 ≤
λn = 1 and xi = λixn + (1− λi)x1. Then

f(xn)λn−1 + (1− λ2)f(x1) = (f(xn)− f(x1))λn−1 + f(x1)(λn−1 + λn − λ2)
= (f(xn)− f(x1))(λn−1λn − λ1λ2) + f(x1)(λn + λn−1 − λ2 − λ1)

= (f(xn)− f(x1))
n−1∑
i=2

(λiλi+1 − λi−1λi) + f(x1)
n−1∑
i=2

(λi+1 − λi−1)

=
n−1∑
i=2

[λi+1 − λi−1][λif(xn) + (1− λi)f(x1)]

≥
n−1∑
i=2

[λi+1 − λi−1]f(xi) .

Multiplying by xn − x1 and rearranging terms yields that

xn−1f(xn) + xnf(x1) ≥
[ n−1∑
i=2

f(xi)(xi+1 − xi−1)
]

+ x1f(xn) + x2f(x1)

from which the desired result follows.
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