
Solutions

206. In a group consisting of five people, among any three people, there are two who know each other and
two neither of whom knows the other. Prove that it is possible to seat the group around a circular table
so that each adjacent pair knows each other.

Solution. Let the five people be A,B,C, D, E. We first show that each person must know exactly two
of the others. Suppose, if possible, that A knows B,C,D. Then, by considering all the triples containing A,
we see that each pair of B,C,D do not know each other, contrary to hypothesis. Thus, A knows at most
two people. On the other hand, if A knows none of B, C and D, then each pair of B,C,D must know each
other again yielding a contradiction. Therefore, A knows exactly two people, say B and E. Similarly, each
of the others knows exactly two people.

Since A knows B and E, A does not know C and D, so, by considering the triple A,C, D, we see that C
and D must know each other, and by considering the triple A,B,E, that B and E do not know each other.
Thus, B knows A and one of C and D; suppose, say, that B knows C. Then B knows neither of D and E,
so that D must know E. Hence, we can seat the people in the order A−−B −−C −−D −−E, and each
adjacent pair knows each other.

207. Let n be a positive integer exceeding 1. Suppose that A = (a1, a2, · · · , am) is an ordered set of m = 2n

numbers, each of which is equal to either 1 or −1. Let

S(A) = (a1a2, a2a3, · · · , am−1am, ama1) .

Define, S0(A) = A, S1(A) = S(A), and for k ≥ 1, Sk+1 = S(Sk(A)). Is it always possible to find a
positive integer r for which Sr(A) consists entirely of 1s?

Solution 1. For i > m = 2n, define ai = ai−m. Then, by induction, for positive integers r, we can show
that the rth iterate of S acting on A is

Sr(A) = S(Sr−1(A)) =
(
· · · ,

r∏
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)
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This is clear when r = 1. Suppose it holds for the index r. Then the kth term of Sr+1(A) is equal to
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Now let r = 2n. Then, for 1 ≤ i ≤ 2n−1,(
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)
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)
is even, since the highest power of 2 that divides 2n − j is that same as the highest power of 2 that divides
j for 1 ≤ j ≤ 2n − 1 and 2 divides i to a lower power than it divides 2n. Hence the kth term of Sm(A) is
equal to akak+m = a2

k = 1, and so Sm(A) has all its entries equal to 1.

Solution 2. [A. Chan] Defining ai for all positive indices i as in the previous solution, we find that

S(A) = (a1a2, a2a3, a3a4, · · · , ama1)

S2(A) = (a1a3, a2a4, a3a5, · · · , ama2)

S4(A) = (a1a5, a2a6, a3a7, · · · , ama4)
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S8(A) = (a1a9, a2a10, · · · , ama8)

and so on, until we come to, for m = 2n,

Sm(A) = (a1a1+m, a2a2+m, · · · , ama2m) = (a2
1, a

2
2, · · · , a2

m) = (1, 1, · · · , 1).

Solution 3. [R. Romanescu] We prove the result by induction on n. The result holds for n = 1, since for
A = (a1, a2), we have that S(A) = (a1a2, a2a1), and S2(A) = (1, 1). Suppose, for vectors with 2n entries, we
have shown that S2n

(A) = (1, 1, · · · , 1) for n-vectors A, for n ≥ 1. Consider the following vector with 2n+1

entries: A = (a1, b1, a2, b2, · · · , am, bm) where m = 2n. Then

S2(A) = (a1a2, b1b2, a2a3, b2b3, · · · , am−1am, bm−1bm) ,

i.e., applying S twice is equivalent to applying S to the separate vectors consisting of the even entries and
of the odd entries. Then, by the induction, applying S2 2n times (equivalent to applying S 2n+1 times), we
get a vector consisting solely of 1s.

208. Determine all positive integers n for which n = a2 + b2 + c2 + d2, where a < b < c < d and a, b, c, d are
the four smallest positive divisors of n.

Solution. It is clear that a = 1. Suppose, if possible that n is odd; then its divisors a, b, c, d must be
odd, and so a2 + b2 + c2 + d2 must be even, leading to a contradiction. Hence n must be even, and so b = 2,
and exactly one of c and d is odd. Hence

n = a2 + b2 + c2 + d2 ≡ 1 + 0 + 1 + 0 = 2

mod 4, and so c must be an odd prime number and d its double. Thus, n = 5(1 + c2). Since c divides n, c
must divide 5, and so c = 5. We conclude that n = 130.

209. Determine all positive integers n for which 2n − 1 is a multiple of 3 and (2n − 1)/3 has a multiple of the
form 4m2 + 1 for some integer m.

Solution. We first establish the following result: let p be an odd prime and suppose that x2 ≡ −1 (mod
p) for some integer n; then p ≡ 1 (mod 4). Proof. By Fermat’s Little Theorem, xp−1 ≡ 1 (mod p), since x
cannot be a multiple of p. Also x4 ≡ 1 (mod p). Suppose that p− 1 = 4q + r where 0 ≤ r ≤ 3. Since p− 1
is even, so is r; thus, r = 0 or r = 2. Now xr ≡ xrx4q ≡ xp−1 ≡ 1 (mod p), so r = 0. Therefore p − 1 is a
multiple of 4. ♠

Suppose that 3 divides 2n− 1. Since 2n ≡ (−1)n (mod 3), n must be even. When n = 2, (2n− 1)/3 = 1
has a multiple of the form (2m)2 + 1; any value of m will do. Suppose that n ≥ 2. Let n = 2u · v, with v
odd and u ≥ 1. Then

2n − 1 = (2v + 1)(2v − 1)(2w + 2w−2v + · · ·+ 22v + 1)

where w = n − 2v = 2v(2u−1 − 1). Suppose that (2m)2 ≡ −1 (mod (2n − 1)/3)). Then, since 2v + 1 is
divisible by 3, (2m)2 ≡ −1 (mod 2v − 1), If v ≥ 3, then 2v − 1 is divisible by a prime p congruent to 3 (mod
4) and, by the foregoing result, x2 ≡ −1 (mod p) is not solvable. We are led to a contradiction, and so v = 1
and n must be a power of 2.

Now let n = 2u. Then

2n − 1 = (2− 1)(2 + 1)(22 + 1)(24 + 1) · · · (22u−1
+ 1)

so that
2n − 1

3
=

u−1∏
i=1

(22i

+ 1) .
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We now use the Chinese Remainder Theorem: if q1, q2, · · · , qr are pairwise coprime integers and ai, a2,
· · · , ar arbitrary integers, then there exists an integer x such that x ≡ ai (mod q1q2 · · · qr) for 1 ≤ i ≤ r, and

x is unique up to a multiple of q1q2 · · · qr. This is applied to qi = 22i

+ 1 (1 ≤ i ≤ u− 1) and ai = 22i−1−1.
Observe that qi and qj are coprime for i < j. (For, if 22i ≡ −1 (mod p), then 22j ≡ 22i+1 ≡ 1 (mod p), so
that 22j

+ 1 ≡ 2 (mod p) and p = 1.) So there exists an integer m for which

m ≡ 22i−1−1 (mod 22i

+ 1)

for 1 ≤ i ≤ u− 1. Therefore
4m2 + 1 ≡ 22 · 22i−2 + 1 ≡ 22i

+ 1 ≡ 0

modulo
∏u−1

i=1 (22i

+ 1) as desired.

For example, when u = 3, we have m ≡ 1 (mod 5) and m ≡ 2 (mod 17), so we take m = 36 and find that
4m2 + 1 = 61× 85 = 61× ( 1

3 × (28 − 1)). When u = 4, we need to satisfy m ≡ 1 (mod 5), m ≡ 2 (mod 17)
and m ≡ 8 (mod 257): when m = 3606, 4m2 + 1 = 52012045 = 2381× 5× 17× 257 = 2381× ( 1

3 × (216− 1)).

210. ABC and DAC are two isosceles triangles for which B and D are on opposite sides of AC, AB = AC,
DA = DC, 6 BAC = 20◦ and 6 ADC = 100◦. Prove that AB = BC + CD.

Solution 1. Produce BC to E so that CE = CD. Note that 6 DCE = 60◦ (why?). Then ∆DCE
is isosceles and so 6 CDE = 60◦. Since DA = DE, we have that 6 DAE = 6 DEA = 10◦. Therefore,
6 BAE = 60◦ − 10◦ = 50◦ and 6 BEA = 60◦ = 10◦ = 50◦, whence AB = BE.

Solution 2. Let a = |AB| = |AC|, b = |BC|, c = |AD| = |CD|, and d = |BD|. From the Law of Cosines
applied to two triangles, we find that d2 = b2 + c2 + bc = a2 + c2 − ac, whence 0 = b2 − a2 + (b + a)c =
(b + a)(b− a + c). Therefore, a = b + c, as desired.

Solution 3. [M. Zaharia] From the Law of Sines, we have that (sin 80◦)BC = (sin 20◦)AB and

(sin 80◦)CD = (sin 100◦)CD = (sin 40◦)AC = (sin 40◦)AB .

Hence
(sin 80◦)[BC + CD] = [sin 20◦ + sin 40◦]AB = [2 sin 30◦ cos 10◦]AB .

Since sin 80◦ = cos 10◦ and sin 30◦ = 1/2, the result follows.

Solution 4. Since, in any triangle, longer sides are opposite larger angles, AB = AC > AD. Let E be a
point of the side AB for which AE = AD. Then ∆AED is isosceles with apex angle 60◦, from which we find
that CD = AD = DE = AE. Since ∆DEC is isosceles and 6 EDC = 6 ADC − 6 ADE = 100◦ − 60◦ = 40◦,
it follows that 6 DEC = 6 DCE = 70◦, 6 ACE = 70◦ − 40◦ = 30◦ and

6 ECB = 80◦ − 30◦ = 50◦ = 120◦ − 70◦ = 6 DEB − 6 DEC = 6 CEB .

Hence BE = BC and so AB = AE + EB = CD + BC.

Solution 5. Since 6 ABC + 6 ADC = 80◦ + 100◦ = 180◦, ABCD is a concyclic quadrilateral. Suppose,
wolog, that the circumcircle has unit radius. Since AB, BC and CD subtend respective angles 160◦, 40◦,
80◦ at the centre of the circumcircle, AB = 2 sin 80◦, BC = 2 sin 20◦ and CD = 2 sin 40◦. Since

sin 20◦ + sin 40◦ = 2 sin 30◦ cos 10◦ = sin 80◦ ,

the result follows.

211. Let ABC be a triangle and let M be an interior point. Prove that

min {MA, MB, MC}+ MA + MB + MC < AB + BC + CA .
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Solution 1. Let D, E, F be the respective midpoints of BC, AC, AB. Suppose, wolog, M belongs to
both of the trapezoids ABDE and BCEF . Then

MA + MB < BD + DE + EA and MB + MC < BF + FE + EC

whence
MA + 2MB + MC < AB + BC + CA .

To see, for example, that MA+MB < BD +DE +EA, construct GH such that G lies on the segment
BD, H lies on the segment AE, GH‖DE and M lies on the segment GH. Then

AM + MB < AH + HM + MG + GB = AH + HG + GB

< AH + HD + DG + GB = AH + HD + DB

< AH + HE + ED + DB = EA + DE + BD .

Solution 2. [R. Romanescu] We first establish that, if W is an interior point of a triangle XY Z, then
XW + WY < XZ + ZY . To see this, produce Y W to meet XZ at V . Then

XW + Y W < XV + V W + Y W = XV + V Y < XV + V Z + ZY = XZ + ZY .

Let AP , BQ, CR be the medians of triangle ABC. These medians meet at the centroid G and partition
the triangle into six regions. Wolog, suppose that M is in the triangle AGR. Then AM + MB < AG + GB
and AM + MC < AR + RC. Hence 2AM + MB + MC < AG + GB + AR + RC. Since AP < AR + RP =
1
2 (AB + AC), AG = 2

3AP < 1
3 (AB + BC). Similarly, BG < 1

3 (AB + AC). Also CR < 1
2 (AC + BC) and

AR = 1
2AB. Hence

AG + GB + AR + RC <
7
6
AB +

5
6
AC +

5
6
BC

< AB +
1
6
(AC + BC) +

5
6
AC +

5
6
BC

= AB + BC + CA .

The result now follows.

212. A set S of points in space has at least three elements and satisfies the condition that, for any two
distinct points A and B in S, the right bisecting plane of the segment AB is a plane of symmetry for
S. Determine all possible finite sets S that satisfy the condition.

Solution. We first show that all points of S lie on the surface of a single sphere. Let U be the smallest
sphere containing all the points of S. Then there is a point A ∈ S on the surface of U . Let B be any other
point of S and P be the right bisecting plane of the segment AB. Since this is a plane of symmetry for S,
the image V of the sphere U reflected in P must contain all the points of S. Let W be the sphere whose
equatorial plane is P ∩U = P ∩V . Then S ⊆ U ∩V ⊆ W ⊆ U ∪V . Since U is the smallest sphere containing
S and W is symmetric about P , U ⊆ W , V ⊆ W and U ∩ V = U ∪ V . Hence U = V and P must be an
equatorial plane of U . But this means that B must lie on the surface of U .

Consider the case that S is a planar set; then the points of S lie on a circle. Let three of them in order
be A, B, C. Since the image of B reflected in the right bisector of AC is a point of S on the arc AC, it can
only be B itself. Hence AB = BC. Since S is finite, S must consist of the vertices of a regular polygon.

In general, any plane that intersects S must intersect it in the vertices of a regular polygon, so that, in
particular, all the faces of the convex hull of S are regular polygons. Let F be one of these faces and G and
H be faces adjacent to F sharing the respective edges AB and BC with F . Then G and H are images of
each other under the reflection in the right bisector of AC, and so must be congruent. Consider the vertex
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B of F ; if I is a face adjacent to G and contains the vertex B, then F and I must be congruent. In this
way, we can see that around each vertex of the convex hull of S, every second face is congruent. Thus, the
polyhedron has all its faces of one or two types of congruent regular polygons. Since every vertex can be
carried into every other by a sequence of reflections in right bisectors of edges, each vertex must have the
same number of faces that contain it.

Since all the angles of faces meeting at a given vertex must sum to less than 360◦ and since all the
faces are regular polygons, there must be 3, 4 or 5 faces at each vertex. If all the faces are congruent, the
convex hull must be a regular polyhedron whenever S has at least four points. If S consists of the vertices
of a regular tetrahedron or a regular octahedron, the conditions of the problem are satisfied. Otherside, it
is possible to find an edge and a vertex whose plane intersects the polyhedron in a non-equilateral triangle
so S cannot be at the vertices of a cube, a regular dodecahedron or a regular icosahedron.

If the polyhedron has two types of faces, then at each vertex, there must be two equilateral triangles
and either two squares or two pentagons. Suppose that PQR is one of the triangle faces, and that T is the
other end of the edge emanating from R. Then the plane PQT cuts the polyhedron in the non-equilateral
triangle PQT (note that all sides have the same length, so there are no other points of S on this plane).
Hence, this possibility must be rejected.
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