## PROBLEMS FOR SEPTEMBER

Please send your solution to
Edward J. Barbeau
Department of Mathematics
University of Toronto
Toronto, ON M5S 3G3
no later than October 15, 2003. It is important that your complete mailing address and your email address appear on the front page.
255. Prove that there is no positive integer that, when written to base 10 , is equal to its $k$ th multiple when its initial digit (on the left) is transferred to the right (units end), where $2 \leq k \leq 9$ and $k \neq 3$.
256. Find the condition that must be satisfied by $y_{1}, y_{2}, y_{3}, y_{4}$ in order that the following set of six simultaneous equations in $x_{1}, x_{2}, x_{3}, x_{4}$ is solvable. Where possible, find the solution.

$$
\begin{array}{ccc}
x_{1}+x_{2}=y_{1} y_{2} & x_{1}+x_{3}=y_{1} y_{3} & x_{1}+x_{4}=y_{1} y_{4} \\
x_{2}+x_{3}=y_{2} y_{3} & x_{2}+x_{4}=y_{2} y_{4} & x_{3}+x_{4}=y_{3} y_{4}
\end{array}
$$

257. Let $n$ be a positive integer exceeding 1 . Discuss the solution of the system of equations:

$$
\begin{gathered}
a x_{1}+x_{2}+\cdots+x_{n}=1 \\
x_{1}+a x_{2}+\cdots+x_{n}=a \\
\cdots \\
x_{1}+x_{2}+\cdots+a x_{i}+\cdots+x_{n}=a^{i-1} \\
\cdots \\
x_{1}+x_{2}+\cdots+x_{i}+\cdots+a x_{n}=a^{n-1} .
\end{gathered}
$$

258. The infinite sequence $\left\{a_{n} ; n=0,1,2, \cdots\right\}$ satisfies the recursion

$$
a_{n+1}=a_{n}^{2}+\left(a_{n}-1\right)^{2}
$$

for $n \geq 0$. Find all rational numbers $a_{0}$ such that there are four distinct indices $p, q, r, s$ for which $a_{p}-a_{q}=a_{r}-a_{s}$.
259. Let $A B C$ be a given triangle and let $A^{\prime} B C, A B^{\prime} C, A B C^{\prime}$ be equilateral triangles erected outwards on the sides of triangle $A B C$. Let $\Omega$ be the circumcircle of $A^{\prime} B^{\prime} C^{\prime}$ and let $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ be the respective intersections of $\Omega$ with the lines $A A^{\prime}, B B^{\prime}, C C^{\prime}$.

Prove that $A A^{\prime}, B B^{\prime}, C C^{\prime}$ are concurrent and that

$$
A A^{\prime \prime}+B B^{\prime \prime}+C C^{\prime \prime}=A A^{\prime}=B B^{\prime}=C C^{\prime}
$$

260. $T A B C$ is a tetrahedron with volume $1, G$ is the centroid of triangle $A B C$ and $O$ is the midpoint of $T G$. Reflect $T A B C$ in $O$ to get $T^{\prime} A^{\prime} B^{\prime} C^{\prime}$. Find the volume of the intersection of $T A B C$ and $T^{\prime} A^{\prime} B^{\prime} C^{\prime}$.
261. Let $x, y, z>0$. Prove that

$$
\frac{x}{x+\sqrt{(x+y)(x+z)}}+\frac{y}{y+\sqrt{(x+y)(y+z)}}+\frac{z}{z+\sqrt{(x+z)(y+z)}} \leq 1
$$

