PROBLEMS FOR AUGUST

Please send your solution to
Edward J. Barbeau
Department of Mathematics
University of Toronto
Toronto, ON M5S 3G3
no later than September 30, 2003. It is important that your complete mailing address and your email address appear on the front page.
227. [Since the original statement of this problem in May was incorrect and not everyone picked up the correction, it is reposed.] Let n be an integer exceeding 2 and let $a_{0}, a_{1}, a_{2}, \cdots, a_{n}, a_{n+1}$ be positive real numbers for which $a_{0}=a_{n}, a_{1}=a_{n+1}$ and

$$
a_{i-1}+a_{i+1}=k_{i} a_{i}
$$

for some positive integers k_{i}, where $1 \leq i \leq n$.
Prove that

$$
2 n \leq k_{1}+k_{2}+\cdots+k_{n} \leq 3 n
$$

241. [Corrected.] Determine

$$
\sec 40^{\circ}+\sec 80^{\circ}+\sec 160^{\circ}
$$

248. Find all real solutions to the equation

$$
\sqrt{x+3-4 \sqrt{x-1}}+\sqrt{x+8-6 \sqrt{x-1}}=1
$$

249. The non-isosceles right triangle $A B C$ has $\angle C A B=90^{\circ}$. Its inscribed circle with centre T touches the sides $A B$ and $A C$ at U and V respectively. The tangent through A of the circumscribed circle of triangle $A B C$ meets $U V$ in S. Prove that:
(a) $S T \| B C$;
(b) $\left|d_{1}-d_{2}\right|=r$, where r is the radius of the inscribed circle, and d_{1} and d_{2} are the respective distances from S to $A C$ and $A B$.
250. In a convex polygon P, some diagonals have been drawn so that no two have an intersection in the interior of P. Show that there exists at least two vertices of P, neither of which is an enpoint of any of these diagonals.
251. Prove that there are infinitely many positive integers n for which the numbers $\{1,2,3, \cdots, 3 n\}$ can be arranged in a rectangular array with three rows and n columns for which (a) each row has the same sum, a multiple of 6 , and (b) each column has the same sum, a multiple of 6 .
252. Suppose that a and b are the roots of the quadratic $x^{2}+p x+1$ and that c and d are the roots of the quadratic $x^{2}+q x+1$. Determine $(a-c)(b-c)(a+d)(b+d)$ as a function of p and q.
253. Let n be a positive integer and let $\theta=\pi /(2 n+1)$. Prove that $\cot ^{2} \theta, \cot ^{2} 2 \theta, \cdots, \cot ^{2} n \theta$ are the solutions of the equation

$$
\binom{2 n+1}{1} x^{n}-\binom{2 n+1}{3} x^{n-1}+\binom{2 n+1}{5} x^{n-2}-\cdots=0
$$

254. Determine the set of all triples (x, y, z) of integers with $1 \leq x, y, z \leq 1000$ for which $x^{2}+y^{2}+z^{2}$ is a multiple of $x y z$.
