Solutions for the December Problems

192. Let $A B C$ be a triangle, D be the midpoint of $A B$ and E a point on the side $A C$ for which $A E=2 E C$. Prove that $B E$ bisects the segment $C D$.

In the following solutions, F is the intersection point of $B E$ and $C D$.
Solution 1. Let G be the midpoint of $A E$. Then $A G=G E=E C$ and $D G \| B E$. In triangle $A D C$, $D G \| F E$ and $G E=E C$, from which it follows that $D F=F C$, as required.

Solution 2. Let $u=[A D F]=[B D F]$ (where $[\cdots]$ denotes area), $v=[A F E], w=[C F E]$ and $z=[B F C]$. Then $2 u+v=2(w+z)$ and $v=2 w$, whence $2 u=2 z$ and $u=z$. It follows from this (two triangles with the same height and equal collinear bases) that F is the midpoint of $C D$.

Solution 3. By Menelaus' Theorem, applied to triangle $A C D$ and transversal $B F E$,

$$
\frac{C E}{E A} \cdot \frac{A B}{B D} \cdot \frac{D F}{F C}=-1
$$

so that $\frac{1}{2} \cdot(-2) \cdot(D F / F C)=-1$ and $D F=F C$, as desired.
Solution 4. [T. Yue] Let K be the midpoint of $A C$; then $B C=2 D K$ and $B C \| D K$. Suppose that $B E$ produced and $D K$ produced meet at H. Since triangles $E B C$ and $E H K$ are similar and $E C=2 E K$, it follows that $B C=2 K H$ and so $D H=B C$. Thus, $D H C B$ is a parallelogram whose diagonals $B H$ and $C D$ must bisect each other. The result follows.

Solution 5. Place the triangle in the cartesian plane so that $B \sim(0,0), C \sim(3,0)$ and $A \sim(6 a, 6 b)$. Then $D \sim(3 a, 3 b), E \sim(2(a+1), 2 b)$ and the lines $B E$ and and $C D$ have the respective equations $y=b x /(a+1)$ and $y=b(x-3) /(a-1)$. These lines intersect at the point $((3 / 2)(a+1),(3 / 2) b)$, and the result follows.

Solution 6. [L. Chen] $[B D E]=[A D E]=\frac{1}{2}[A B E]=[B E C]$. Let M and N be the respective feet of the perpendiculars from D and C to $B E$. Then $[B D E]=[B E C] \Rightarrow D M=C N$. Since $D M F$ and $C N F$ are similar right triangles with $D M=C N$, they are congruent and so $D F=C F$.

Solution 7. [F. Chung; Y. Jean] As in the previous solution, $[B D E]=[B E C]$. Therefore,

$$
\begin{aligned}
D F: F C=[D E F]:[C E F]= & {[D B F]:[C B F]=([D E F]+[D B F]):([C E F]+[C B F]) } \\
& =[B D E]:[B E C]=1: 1
\end{aligned}
$$

Solution 8. [Y. Wei] Let U be a point on $B C$ such that $D U \| A C$. Suppose that $D U$ and $B E$ intersect in V. Then $2 E C=A E=2 D V$, so that $D V=E C$. Also $\angle V D F=\angle E C F$ abd $\angle D F V=\angle E C F$, so that triangles $D V F$ and $C E F$ are congruent. Hence $D F=F C$.

Solution 9. Let $A F$ produced meet $B C$ at L. By Ceva's Theorem,

$$
\frac{A D}{D B} \cdot \frac{B L}{L C} \cdot \frac{C E}{A E}=1
$$

whence $B L=2 L C$ and, so, $L E \| A B$. Since the triangles $A B C$ and $E L C$ are similar with factor $3, A B=3 E L$. Let $E L$ intersect $C D$ at M. Then the triangles $A F B$ and $L F E$ are similar, so that $F D=3 F M$. But,

$$
F D+F M+M C=D C=3 M C \Rightarrow 2 F M=M C \Rightarrow F C=F M+M C=3 F M=F D,
$$

as desired.
Solution 10. [H. Lee] Let $\mathbf{u}=\overrightarrow{D B}, \mathbf{v}=\overrightarrow{E C}, \mathbf{a}=\overrightarrow{B F}, \lambda \mathbf{a}=\overrightarrow{F E}, \mathbf{b}=\overrightarrow{C F}$ and $\mu \mathbf{b}=\overrightarrow{F D}$. Then

$$
\mathbf{a}+\mu \mathbf{b}+\mathbf{u}=\mathbf{0}
$$

and

$$
\mathbf{b}+\lambda \mathbf{a}+\mathbf{v}=\mathbf{0}
$$

Hence

$$
\mathbf{u}=-\mathbf{a}-\mu \mathbf{b} \quad \text { and } \quad \mathbf{v}=-\mathbf{b}-\lambda \mathbf{a} .
$$

Therefore, from triangle $A B E$,

$$
\begin{aligned}
\mathbf{0} & =(\lambda+1) \mathbf{a}-2 \mathbf{v}+2 \mathbf{u} \\
& =(\lambda+1) \mathbf{a}+2 \mathbf{b}+2 \lambda \mathbf{a}-2 \mathbf{a}-2 \mu \mathbf{b} \\
& =(3 \lambda-1) \mathbf{a}+2(1-\mu) \mathbf{b} .
\end{aligned}
$$

Since $\{\mathbf{a}, \mathbf{b}\}$ is a linearly independent set, $\lambda=1 / 3$ and $\mu=1$, yielding the desired result.
Solution 11. [M. Zaharia] Place masses 1, 1, 2, respectively, at the vertices A, B, C. We locate the centre of gravity of these masses in two ways. Since the masses at A and B have their centre of gravity at D, we can get an equivalent system by replacing the masses at A and B by a mass 2 at the point D. The centre of gravity of the original set-up is equal to the centre of gravity of masses of 2 placed at each of D and C, namely at the midpoint of $C D$.

On the other hand, the centre of gravity of the masses at A and C is at E. So the centre of gravity of the original set-up is equal to the centre of gravity of a mass 3 located at E and a mass 1 located at B, namely on the segment $B E$ (at the point F for which $B F=3 F E$). Since both $B E$ and $C D$ contain the centre of gravity of the original set-up, the result follows.

Solution 12. Place the triangle in the complex plane with C at $0, B$ at $12 z$ and A at 12 . Then D is located at $6(z+1)$ and E at 4 . Let P be the midpoint $3(z+1)$ of $C D$. Then, $B P$ and $P E$ are collinear since

$$
12 z-3(z+1)=3(3 z-1)=3[3(z+1)-4]
$$

i.e., the vector $\overrightarrow{B P}$ is a real multiple of $\overrightarrow{P E}$. The result follows.
193. Determine the volume of an isosceles tetrahedron for which the pairs of opposite edges have lengths a, b, c. Check your answer independently for a regular tetrahedron.

Solution 1. The edges of the tetrahedron can be realized as the diagonals of the six faces of a rectangular parallelepiped with edges of length u, v, w in such a way that $a^{2}=v^{2}+w^{2}, b^{2}=u^{2}+w^{2}$ and $c^{2}=u^{2}+v^{2}$. The tetrahedran can be obtained from the parallelepiped by trimming away four triangular pyramids each with three mutually perpendicular faces (surrounding a corner of the parallelepiped) and three pairwise orthogonal edges of lengths u, v, w. Hence the volume of the tetrahedron is equal to

$$
u v w-4((1 / 6) u v w)=(1 / 3) u v w
$$

¿From the foregoing equations, $2 u^{2}=b^{2}+c^{2}-a^{2}, 2 v^{2}=c^{2}+a^{2}-b^{2}$ and $2 w^{2}=a^{2}+b^{2}-c^{2}$. (By laying out the tetrahedron flat, we see that the triangle of sides a, b, c is acute and the right sides of these equations are indeed positive.) It follows that the volume of the tetrahedron is

$$
\frac{\sqrt{2}}{12} \sqrt{\left(b^{2}+c^{2}-a^{2}\right)\left(c^{2}+a^{2}-b^{2}\right)\left(a^{2}+b^{2}-c^{2}\right)} .
$$

In the case of a regular tetrahedron of side 1 , the height is equal to $\sqrt{2 / 3}$ and the area of a side is equal to $\sqrt{3} / 4$, and the formula checks out.

Solution 2. [D. Yu] Let the base of the tetrahedron be triangle $A B C$, eith $a=|B C|=|A D|, b=$ $|A C|=|B D|, c=|A B|=|C D|$; let P be the foot of the perpendicular from D to the plane of $A B C$ and let $h=|D P|$. Then $|A P|=\sqrt{a^{2}-h^{2}},|B P|=\sqrt{b^{2}-h^{2}},|C P|=\sqrt{c^{2}-h^{2}}$.

Suppose that $\alpha=\angle B C P$ and $\beta=\angle A C P$. Then using the Law of Cosines on triangles $B C P, A C P$ and $A B C$, we obtain that

$$
\begin{aligned}
& \cos \alpha=\frac{a^{2}+c^{2}-b^{2}}{2 a \sqrt{c^{2}-h^{2}}} \\
& \cos \beta=\frac{b^{2}+c^{2}-a^{2}}{2 b \sqrt{c^{2}-h^{2}}}
\end{aligned}
$$

and

$$
\cos (\alpha+\beta)=\frac{a^{2}+b^{2}-c^{2}}{2 a b}
$$

whence

$$
\begin{gathered}
\frac{a^{2}+b^{2}-c^{2}}{2 a b}= \\
\frac{\left(a^{2}+c^{2}-b^{2}\right)\left(b^{2}+c^{2}-a^{2}\right)-\sqrt{4 a^{2}\left(c^{2}-h^{2}\right)-\left(a^{2}+c^{2}-b^{2}\right)^{2}} \sqrt{4 b^{2}\left(c^{2}-h^{2}\right)-\left(b^{2}+c^{2}-a^{2}\right)^{2}}}{4 a b\left(c^{2}-h^{2}\right)}
\end{gathered}
$$

Shifting terms and squaring leads to
$\left[2\left(a^{2}+b^{2}-c^{2}\right)\left(c^{2}-h^{2}\right)-\left(a^{2}+c^{2}-b^{2}\right)\left(b^{2}+c^{2}-a^{2}\right)\right]^{2}=\left[4 a^{2}\left(c^{2}-h^{2}\right)-\left(a^{2}+c^{2}-b^{2}\right)^{2}\right]\left[4 b^{2}\left(c^{2}-h^{2}\right)-\left(b^{2}+c^{2}-a^{2}\right)^{2}\right]$.
With $u=b^{2}+c^{2}-a^{2}, v=c^{2}+a^{2}-b^{2}, w=a^{2}+b^{2}-c^{2}, z=c^{2}-h^{2}$, this can be rendered

$$
\begin{aligned}
0 & =[2 w z-u v]^{2}-\left[4 a^{2} z-v^{2}\right]\left[4 b^{2} z-u^{2}\right] \\
& =z\left[4\left(w^{2}-4 a^{2} b^{2}\right) z-4\left(u v w-a^{2} u^{2}-b^{2} v^{2}\right)\right]
\end{aligned}
$$

so that

$$
c^{2}-h^{2}=z=\frac{a^{2} u^{2}+b^{2} v^{2}-u v w}{4 a^{2} b^{2}-w^{2}}
$$

and

$$
h^{2}=\frac{4 a^{2} b^{2} c^{2}+u v w-a^{2} u^{2}-b^{2} v^{2}-c^{2} w^{2}}{4 a^{2} b^{2}-w^{2}}
$$

Now

$$
\begin{aligned}
4 a^{2} b^{2}-w^{2} & =-a^{4}-b^{4}-c^{4}+2 a^{2} b^{2}+2 a^{2} c^{2}+2 b^{2} c^{2} \\
& =(a+b+c)(a+b-c)(b+c-a)(c+a-b) \\
& =16 S^{2}
\end{aligned}
$$

where S is the area of triangle $A B C$.
Now consider the numerator of h^{2}. Its value when $w=a^{2}+b^{2}-c^{2}$ is set equal to 0 is $4 a^{2} b^{2} c^{2}-a^{2} u^{2}-$ $b^{2} v^{2}=4 a^{2} b^{2} c^{2}-a^{2}\left(2 b^{2}\right)-b^{2}\left(2 a^{2}\right)=0$, so that w divides the numerator. So also do u and v. Hence the numerator of degree 6 in a, b, c must be a multiple of $u v w$, also of degree 6 in a, b, c. Hence the numerator is a multiple of $u v w$. Comparing the coefficients of a^{6} (say) gives that the numerator must be $2 u v w$. Hence

$$
h^{2}=\frac{2 u v w}{16 S^{2}}=\frac{u v w}{8 S^{2}}
$$

The volume V of the tetrahedron satisfies

$$
V^{2}=\left(\frac{S h}{3}\right)^{2}=\frac{S^{2} h^{2}}{9}=\frac{u v w}{72}
$$

whence

$$
V=\frac{\sqrt{u v w}}{6 \sqrt{2}}=\frac{2 u v w}{12}
$$

The checking for the tetrahedron proceeds as before.
194. Let $A B C$ be a triangle with incentre I. Let M be the midpoint of $B C, U$ be the intersection of $A I$ produced with $B C, D$ be the foot of the perpendicular from I to $B C$ and P be the foot of the perpendicular from A to $B C$. Prove that

$$
|P D \| D M|=|D U||P M| .
$$

Solution 1. Suppose that the lengths of the sides of the triangle are a, b and c, using the conventional notation. Then the distance from B of the following points on the side $B C$ are given by $(B, 0),(C, a)$, $(M, a / 2),(U, c a /(b+c)),(D,(a+c-b) / 2)$ and $(P, c \cos B)=\left(P,\left(a^{2}+c^{2}-b^{2}\right) /(2 a)\right)$. One can then verify the desired relation by calculation.

Solution 2. [L. Chen] Let the side lengths of the triangle be a, b, c, as conventional, and, wolog, suppose that $c<b$. Let $u=|B P|$ and $v=|P C|$. Then, equating two expressions for the area of the triangle, with $r=|I D|$ as the inradius, we find that $|A P|=2 r s / a$. From similar triangle, we have that

$$
\frac{|P U|}{|D U|}=\frac{|A P|}{|I D|}=\frac{2 s}{a}=1+\frac{b+c}{a}
$$

whence

$$
\frac{|P D|}{|D U|}=\frac{b+c}{a} .
$$

Now $|P M|=(a / 2)-u=(v-u) / 2$ and $|D M|=(b-c) / 2$. Hence

$$
\frac{|P M|}{|D M|}=\frac{v-u}{b-c} .
$$

By Pythagoras' Theorem, $c^{2}-u^{2}=b^{2}-v^{2}$, whence

$$
\frac{v-u}{b-c}=\frac{b+c}{v+u}=\frac{b+c}{a}
$$

and the result follows.
195. Let $A B C D$ be a convex quadrilateral and let the midpoints of $A C$ and $B D$ be P and Q respectively, Prove that

$$
|A B|^{2}+|B C|^{2}+|C D|^{2}+|D A|^{2}=|A C|^{2}+|B D|^{2}+4|P Q|^{2} .
$$

Solution 1. Let X denote the vector from an origin to a point X. Then, vectorially, it can be verified that

$$
\begin{aligned}
(A-B) \cdot(A-B)+ & (B-C) \cdot(B-C)+(C-D) \cdot(C-D)+(D-A) \cdot(D-A) \\
& -(A-C) \cdot(A-C)-(B-D) \cdot(B-D) \\
= & -2 A \cdot B-2 B \cdot C-2 C \cdot D-2 D \cdot A+2 A \cdot C+2 B \cdot D+A^{2}+B^{2}+C^{2}+D^{2} \\
= & 4\left(\frac{A+C}{2}-\frac{B+D}{2}\right) \cdot\left(\frac{A+C}{2}-\frac{B+D}{2}\right)
\end{aligned}
$$

which yields the desired result.
Solution 2. [T. Yin] We use the result that for any parallelogram $K L M N, 2|K L|^{2}+2|L M|^{2}=|K M|^{2}+$ $|L N|^{2}$. This is straightforward to verify using the Law of Cosines, for example. Let W, X, Y, Z be the
respective midpoints of the sides $A B, B C, C D, D A$. Using the fact that all of $W X Y Z, P X Q Z$ and $P W Q Y$ are parallelograms, we have that

$$
\begin{aligned}
|A B|^{2}+|B C|^{2}+|C D|^{2}+|D A|^{2} & =4\left[|P X|^{2}+|P W|^{2}+|P Z|^{2}+|P Y|^{2}\right] \\
& =2\left[|P Q|^{2}+|X Z|^{2}+|P Q|^{2}+|W Y|^{2}\right] \\
& =4|P Q|^{2}+2\left[|X Z|^{2}+|W Y|^{2}\right] \\
& =4|P Q|^{2}+4\left[|W Z|^{2}+|W X|^{2}\right] \\
& =4|P Q|^{2}+|B D|^{2}+|A C|^{2}
\end{aligned}
$$

196. Determine five values of p for which the polynomial $x^{2}+2002 x-1002 p$ has integer roots.

Answer. Here are some values of $(p ; u, v)$ with u and v the corresponding roots: $(0 ; 0,-2002)$, $(4 ; 2,-2004),(784 ; 336,-2338),(1780 ; 668,-2670),(3004 ; 2002,-3004),(3012 ; 1004,-3006)$, $(4460 ; 1338,-3340),(8012 ; 2004,-4006),(8024 ; 2006,-4008),(-556 ;-334,-1668)$, (-1000; -1000, -1002).

Solution 1. If x satisfies the equation $x^{2}+2002 x-1002 p=0$, then we must have $p=x(x+2002) /(1002)$. If we choose integers x for which $x(x+2002)$ is a multiple of 1002 , then this value of p will be an integer that yields a quadratic with two integer roots, namely x and $-2002-x$. One way to do this is to select either $x \equiv 0$ or $x \equiv 2(\bmod 1002)$. Observing that $1002=2 \times 3 \times 167$, we can also try to make $x \equiv 0(\bmod$ $167)$ and $x \equiv 2(\bmod 6)$. For example, $x=668$ works. We can also try $x \equiv 2(\bmod 167)$ and $x \equiv 0(\bmod 6)$; in this case, $x=336$ works.

Solution 2. The discriminant of the quadratic is 4 times $1001^{2}+1002 p$. Suppose that p is selected to make this equal to a square q^{2}. Then we have that

$$
1002 p=q^{2}-1001^{2}=(q-1001)(q+1001)
$$

We select q so that either $q-1001$ or $q+1001$ is divisible by 1002 . For example $q=2003,1,3005,4007$ all work. We can also make one factor divisible by 667 and the other by 6 .
197. Determine all integers x and y that satisfy the equation $x^{3}+9 x y+127=y^{3}$.

Solution 1. Let $x=y+z$. Then the equation becomes $(3 z+9) y^{2}+\left(3 z^{2}+9 z\right) y+\left(z^{3}+127\right)=0$, a quadratic in y whose discriminant is equal to

$$
\begin{aligned}
(3 z+9)^{2} z^{2} & -4(3 z+9)\left(z^{3}+127\right) \\
& =(3 z+9)\left[z^{2}(3 z+9)-4\left(z^{3}+127\right)\right] \\
& =-(3 z+9)\left(z^{3}-9 z^{2}+508\right)
\end{aligned}
$$

Note that $z^{3}-9 z^{2}+508=z^{2}(z-9)+508$ is nonnegative if and only if $z \geq-5$ (z being an integer) and that $3 z+9$ is nonnegative if and only if $z \geq-3$. Hence the discriminant is nonnegative if and only if $z=-3,-4,-5$. ¿From the quadratic equation, we have that $z^{3}+127 \equiv 0(\bmod 3)$. The only possibility is $z=-4$ and this leads to the equation $0=-3 y^{2}+12 y+63=-3(y-7)(y+3)$ and the solutions $(x, y)=(3,7),(-7,-3)$.

Solution 2. The equation can be rewritten

$$
(x-y)\left[(x-y)^{2}+3 x y\right]+9 x y=-127
$$

or

$$
u^{3}+3 v(u+3)=-127
$$

where $u=x-y$ and $v=x y$. Hence

$$
3 v=-\frac{u^{3}+127}{u+3}=-\left[\left(u^{2}-3 u+9\right)+\frac{100}{u+3}\right]
$$

Therefore, $u^{3}+127 \equiv 0(\bmod 3)$, so that $u \equiv 2(\bmod 3)$, and $u+3$ divides 100 . The candidates are

$$
u=-103,-28,-13,-7,-4,-1,2,17,47
$$

Checking these out leads to the posible solutions.
198. Let p be a prime number and let $f(x)$ be a polynomial of degree d with integer coefficients such that $f(0)=0$ and $f(1)=1$ and that, for every positive integer $n, f(n) \equiv 0$ or $f(n) \equiv 1$, modulo p. Prove that $d \geq p-1$. Give an example of such a polynomial.

Solution. Since the polynomial is nonconstant, $d \geq 1$, so that the result holds for $p=2$. Henceforth, assume that p is an odd prime. Let $0 \leq k \leq p-2$. Consider the polynomial

$$
p_{k}(x)=\frac{x(x-1)(x-2) \cdots(x-k+1)(x-k-1) \cdots(x-p+2)}{k!(p-k-2)!(-1)^{p-k}} .
$$

We have that $p_{k}(k)=1$ and $p_{k}(x)=0$ when $x=0,1,2, \cdots, k-1, k+1, \cdots, p-2$. Let

$$
g(x)=\sum_{k=0}^{p-2} f(k) p_{k}(x)
$$

Then the degree of $g(x)$ does not exceed $p-2$ and $g(x)=f(x)$ for $x=0,1,2, \cdots, p-2$; in fact, $g(x)$ is the unique polynomial of degree less than $p-1$ that agrees with f at these $p-1$ points (why?).

Now

$$
g(p-1)=\sum_{k=0}^{p-2}(-1)^{p-k} \frac{(p-1)!}{k!(p-k-1)!} f(k)=\sum_{k=0}^{p-2}(-1)^{p-k}\binom{p-1}{k} f(k) .
$$

Since $\binom{p-1}{k}=\binom{p}{k}-\binom{p-1}{k-1}$ and $\binom{p}{k} \equiv 0(\bmod p)$ for $1 \leq k \leq p-1$, and induction argument yields that $\binom{p-1}{k} \equiv(-1)^{k}$ for $1 \leq k \leq p-1$, so that

$$
g(p-1) \equiv(-1)^{p} \sum_{k=0}^{p-2} f(k)
$$

$(\bmod p)$. Since $f(0)=0$ and $f(1)=1$, it follows that $\sum_{k=0}^{p-2} f(k)$ is congruent to some number between 1 and $p-2$ inclusive, so that $g(p-1) \not \equiv 0$ and $g(p-1) \not \equiv 1(\bmod p)$. Hence $f(p-1) \neq g(p-1)$, so that f and g are distinct polynomials. Thus, the degree of g exceeds $p-2$ as desired.

By Fermat's Little Theorem, the polynomial x^{p-1} satisfies the condition.
Solution 2. [M. Guay-Paquet] Let

$$
h(x)=f(x)+f(2 x)+\cdots+f((p-1) x) .
$$

Then $h(1) \not \equiv 0(\bmod p)$ and $h(0)=0$. The degree of h is equal to d, the degree of f.
Let $x \not \equiv 0(\bmod p)$. Then $(x, 2 x, 3 x, \cdots,(p-1) x)$ is a permutation of $(1,2,3, \cdots, p-1)$, so that $h(x) \equiv h(1)(\bmod p)$.

Suppose that $g(x)=h(x)-h(1)$. The degree of g is equal to $d, g(0) \equiv-h(1) \not \equiv 0(\bmod p)$ and $g(x) \equiv 0$ whenever $x \not \equiv 0(\bmod p)$. Therefore, $g(x)$ differs from a polynomial of the form $k(x-1)(x-2) \cdots(x-\overline{p-1})$ by a polynomial whose coefficients are multiples of p. Since $k \not \equiv 0(\bmod p)($ check out the value at 0$)$, the coefficient of x^{k-1} must be nonzero, and so $d \geq p-1$, as desired.

