
Solutions for the December Problems

192. Let ABC be a triangle, D be the midpoint of AB and E a point on the side AC for which AE = 2EC.
Prove that BE bisects the segment CD.

In the following solutions, F is the intersection point of BE and CD.

Solution 1. Let G be the midpoint of AE. Then AG = GE = EC and DG‖BE. In triangle ADC,
DG‖FE and GE = EC, from which it follows that DF = FC, as required.

Solution 2. Let u = [ADF ] = [BDF ] (where [· · ·] denotes area), v = [AFE], w = [CFE] and z = [BFC].
Then 2u+ v = 2(w+ z) and v = 2w, whence 2u = 2z and u = z. It follows from this (two triangles with the
same height and equal collinear bases) that F is the midpoint of CD.

Solution 3. By Menelaus’ Theorem, applied to triangle ACD and transversal BFE,

CE

EA
· AB
BD

· DF
FC

= −1 ,

so that 1
2 · (−2) · (DF/FC) = −1 and DF = FC, as desired.

Solution 4. [T. Yue] Let K be the midpoint of AC; then BC = 2DK and BC‖DK. Suppose that BE
produced and DK produced meet at H. Since triangles EBC and EHK are similar and EC = 2EK, it
follows that BC = 2KH and so DH = BC. Thus, DHCB is a parallelogram whose diagonals BH and CD
must bisect each other. The result follows.

Solution 5. Place the triangle in the cartesian plane so that B ∼ (0, 0), C ∼ (3, 0) and A ∼ (6a, 6b). Then
D ∼ (3a, 3b), E ∼ (2(a+ 1), 2b) and the lines BE and and CD have the respective equations y = bx/(a+ 1)
and y = b(x− 3)/(a− 1). These lines intersect at the point ((3/2)(a+ 1), (3/2)b), and the result follows.

Solution 6. [L. Chen] [BDE] = [ADE] = 1
2 [ABE] = [BEC]. Let M and N be the respective feet of the

perpendiculars from D and C to BE. Then [BDE] = [BEC] ⇒ DM = CN . Since DMF and CNF are
similar right triangles with DM = CN , they are congruent and so DF = CF .

Solution 7. [F. Chung; Y. Jean] As in the previous solution, [BDE] = [BEC]. Therefore,

DF : FC = [DEF ] : [CEF ] = [DBF ] : [CBF ] = ([DEF ] + [DBF ]) : ([CEF ] + [CBF ])

= [BDE] : [BEC] = 1 : 1 .

Solution 8. [Y. Wei] Let U be a point on BC such that DU‖AC. Suppose that DU and BE intersect
in V . Then 2EC = AE = 2DV , so that DV = EC. Also 6 V DF = 6 ECF abd 6 DFV = 6 ECF , so that
triangles DV F and CEF are congruent. Hence DF = FC.

Solution 9. Let AF produced meet BC at L. By Ceva’s Theorem,

AD

DB
· BL
LC
· CE
AE

= 1 ,

whenceBL = 2LC and, so, LE‖AB. Since the trianglesABC and ELC are similar with factor 3, AB = 3EL.
Let EL intersect CD at M . Then the triangles AFB and LFE are similar, so that FD = 3FM . But,

FD + FM +MC = DC = 3MC ⇒ 2FM = MC ⇒ FC = FM +MC = 3FM = FD ,

as desired.

Solution 10. [H. Lee] Let u = −−→DB, v = −−→EC, a = −−→BF , λa = −−→FE, b = −−→CF and µb = −−→FD. Then

a + µb + u = 0
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and
b + λa + v = 0 .

Hence
u = −a− µb and v = −b− λa .

Therefore, from triangle ABE,

0 = (λ+ 1)a− 2v + 2u

= (λ+ 1)a + 2b + 2λa− 2a− 2µb

= (3λ− 1)a + 2(1− µ)b .

Since {a,b} is a linearly independent set, λ = 1/3 and µ = 1, yielding the desired result.

Solution 11. [M. Zaharia] Place masses 1, 1, 2, respectively, at the vertices A, B, C. We locate the
centre of gravity of these masses in two ways. Since the masses at A and B have their centre of gravity at
D, we can get an equivalent system by replacing the masses at A and B by a mass 2 at the point D. The
centre of gravity of the original set-up is equal to the centre of gravity of masses of 2 placed at each of D
and C, namely at the midpoint of CD.

On the other hand, the centre of gravity of the masses at A and C is at E. So the centre of gravity
of the original set-up is equal to the centre of gravity of a mass 3 located at E and a mass 1 located at B,
namely on the segment BE (at the point F for which BF = 3FE). Since both BE and CD contain the
centre of gravity of the original set-up, the result follows.

Solution 12. Place the triangle in the complex plane with C at 0, B at 12z and A at 12. Then D is
located at 6(z+1) and E at 4. Let P be the midpoint 3(z+1) of CD. Then, BP and PE are collinear since

12z − 3(z + 1) = 3(3z − 1) = 3[3(z + 1)− 4] ,

i.e., the vector −−→BP is a real multiple of −−→PE. The result follows.

193. Determine the volume of an isosceles tetrahedron for which the pairs of opposite edges have lengths a,
b, c. Check your answer independently for a regular tetrahedron.

Solution 1. The edges of the tetrahedron can be realized as the diagonals of the six faces of a rectangular
parallelepiped with edges of length u, v, w in such a way that a2 = v2 +w2, b2 = u2 +w2 and c2 = u2 + v2.
The tetrahedran can be obtained from the parallelepiped by trimming away four triangular pyramids each
with three mutually perpendicular faces (surrounding a corner of the parallelepiped) and three pairwise
orthogonal edges of lengths u, v, w. Hence the volume of the tetrahedron is equal to

uvw − 4((1/6)uvw) = (1/3)uvw .

¿From the foregoing equations, 2u2 = b2 + c2 − a2, 2v2 = c2 + a2 − b2 and 2w2 = a2 + b2 − c2. (By
laying out the tetrahedron flat, we see that the triangle of sides a, b, c is acute and the right sides of these
equations are indeed positive.) It follows that the volume of the tetrahedron is

√
2

12

√
(b2 + c2 − a2)(c2 + a2 − b2)(a2 + b2 − c2) .

In the case of a regular tetrahedron of side 1, the height is equal to
√

2/3 and the area of a side is equal
to
√

3/4, and the formula checks out.

Solution 2. [D. Yu] Let the base of the tetrahedron be triangle ABC, eith a = |BC| = |AD|, b =
|AC| = |BD|, c = |AB| = |CD|; let P be the foot of the perpendicular from D to the plane of ABC and let
h = |DP |. Then |AP | =

√
a2 − h2, |BP | =

√
b2 − h2, |CP | =

√
c2 − h2.
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Suppose that α = 6 BCP and β = 6 ACP . Then using the Law of Cosines on triangles BCP , ACP and
ABC, we obtain that

cosα =
a2 + c2 − b2

2a
√
c2 − h2

cosβ =
b2 + c2 − a2

2b
√
c2 − h2

and

cos(α+ β) =
a2 + b2 − c2

2ab
,

whence
a2 + b2 − c2

2ab
=

(a2 + c2 − b2)(b2 + c2 − a2)−
√

4a2(c2 − h2)− (a2 + c2 − b2)2
√

4b2(c2 − h2)− (b2 + c2 − a2)2

4ab(c2 − h2)
.

Shifting terms and squaring leads to

[2(a2+b2−c2)(c2−h2)−(a2+c2−b2)(b2+c2−a2)]2 = [4a2(c2−h2)−(a2+c2−b2)2][4b2(c2−h2)−(b2+c2−a2)2] .

With u = b2 + c2 − a2, v = c2 + a2 − b2, w = a2 + b2 − c2, z = c2 − h2, this can be rendered

0 = [2wz − uv]2 − [4a2z − v2][4b2z − u2]

= z[4(w2 − 4a2b2)z − 4(uvw − a2u2 − b2v2)]

so that

c2 − h2 = z =
a2u2 + b2v2 − uvw

4a2b2 − w2

and

h2 =
4a2b2c2 + uvw − a2u2 − b2v2 − c2w2

4a2b2 − w2
.

Now
4a2b2 − w2 = −a4 − b4 − c4 + 2a2b2 + 2a2c2 + 2b2c2

= (a+ b+ c)(a+ b− c)(b+ c− a)(c+ a− b)
= 16S2 ,

where S is the area of triangle ABC.

Now consider the numerator of h2. Its value when w = a2 + b2− c2 is set equal to 0 is 4a2b2c2− a2u2−
b2v2 = 4a2b2c2 − a2(2b2) − b2(2a2) = 0, so that w divides the numerator. So also do u and v. Hence the
numerator of degree 6 in a, b, c must be a multiple of uvw, also of degree 6 in a, b, c. Hence the numerator
is a multiple of uvw. Comparing the coefficients of a6 (say) gives that the numerator must be 2uvw. Hence

h2 =
2uvw
16S2

=
uvw

8S2
.

The volume V of the tetrahedron satisfies

V 2 =
(
Sh

3

)2

=
S2h2

9
=
uvw

72
,

whence

V =
√
uvw

6
√

2
=

2uvw
12

.
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The checking for the tetrahedron proceeds as before.

194. Let ABC be a triangle with incentre I. Let M be the midpoint of BC, U be the intersection of
AI produced with BC, D be the foot of the perpendicular from I to BC and P be the foot of the
perpendicular from A to BC. Prove that

|PD||DM | = |DU ||PM | .

Solution 1. Suppose that the lengths of the sides of the triangle are a, b and c, using the conventional
notation. Then the distance from B of the following points on the side BC are given by (B, 0), (C, a),
(M,a/2), (U, ca/(b+ c)), (D, (a+ c− b)/2) and (P, c cosB) = (P, (a2 + c2 − b2)/(2a)). One can then verify
the desired relation by calculation.

Solution 2. [L. Chen] Let the side lengths of the triangle be a, b, c, as conventional, and, wolog, suppose
that c < b. Let u = |BP | and v = |PC|. Then, equating two expressions for the area of the triangle, with
r = |ID| as the inradius, we find that |AP | = 2rs/a. From similar triangle, we have that

|PU |
|DU |

=
|AP |
|ID|

=
2s
a

= 1 +
b+ c

a
,

whence
|PD|
|DU |

=
b+ c

a
.

Now |PM | = (a/2)− u = (v − u)/2 and |DM | = (b− c)/2. Hence

|PM |
|DM |

=
v − u
b− c

.

By Pythagoras’ Theorem, c2 − u2 = b2 − v2, whence

v − u
b− c

=
b+ c

v + u
=
b+ c

a

and the result follows.

195. Let ABCD be a convex quadrilateral and let the midpoints of AC and BD be P and Q respectively,
Prove that

|AB|2 + |BC|2 + |CD|2 + |DA|2 = |AC|2 + |BD|2 + 4|PQ|2 .

Solution 1. Let X denote the vector from an origin to a point X. Then, vectorially, it can be verified
that

(A−B) · (A−B) + (B − C) · (B − C) + (C −D) · (C −D) + (D −A) · (D −A)
− (A− C) · (A− C)− (B −D) · (B −D)

= −2A ·B − 2B · C − 2C ·D − 2D ·A+ 2A · C + 2B ·D +A2 +B2 + C2 +D2

= 4
(
A+ C

2
− B +D

2

)
·
(
A+ C

2
− B +D

2

)
,

which yields the desired result.

Solution 2. [T. Yin] We use the result that for any parallelogram KLMN , 2|KL|2 +2|LM |2 = |KM |2 +
|LN |2. This is straightforward to verify using the Law of Cosines, for example. Let W , X, Y , Z be the
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respective midpoints of the sides AB, BC, CD, DA. Using the fact that all of WXY Z, PXQZ and PWQY
are parallelograms, we have that

|AB|2 + |BC|2 + |CD|2 + |DA|2 = 4[|PX|2 + |PW |2 + |PZ|2 + |PY |2]

= 2[|PQ|2 + |XZ|2 + |PQ|2 + |WY |2]

= 4|PQ|2 + 2[|XZ|2 + |WY |2]

= 4|PQ|2 + 4[|WZ|2 + |WX|2]

= 4|PQ|2 + |BD|2 + |AC|2 .

196. Determine five values of p for which the polynomial x2 + 2002x− 1002p has integer roots.

Answer. Here are some values of (p;u, v) with u and v the corresponding roots: (0; 0,−2002),
(4; 2,−2004), (784; 336,−2338), (1780; 668,−2670), (3004; 2002,−3004), (3012; 1004,−3006),
(4460; 1338,−3340), (8012; 2004,−4006), (8024; 2006,−4008), (−556;−334,−1668),
(−1000;−1000,−1002).

Solution 1. If x satisfies the equation x2 +2002x−1002p = 0, then we must have p = x(x+2002)/(1002).
If we choose integers x for which x(x + 2002) is a multiple of 1002, then this value of p will be an integer
that yields a quadratic with two integer roots, namely x and −2002 − x. One way to do this is to select
either x ≡ 0 or x ≡ 2 (mod 1002). Observing that 1002 = 2× 3× 167, we can also try to make x ≡ 0 (mod
167) and x ≡ 2 (mod 6). For example, x = 668 works. We can also try x ≡ 2 (mod 167) and x ≡ 0 (mod 6);
in this case, x = 336 works.

Solution 2. The discriminant of the quadratic is 4 times 10012 + 1002p. Suppose that p is selected to
make this equal to a square q2. Then we have that

1002p = q2 − 10012 = (q − 1001)(q + 1001) .

We select q so that either q − 1001 or q + 1001 is divisible by 1002. For example q = 2003, 1, 3005, 4007 all
work. We can also make one factor divisible by 667 and the other by 6.

197. Determine all integers x and y that satisfy the equation x3 + 9xy + 127 = y3.

Solution 1. Let x = y + z. Then the equation becomes (3z + 9)y2 + (3z2 + 9z)y + (z3 + 127) = 0, a
quadratic in y whose discriminant is equal to

(3z + 9)2z2 − 4(3z + 9)(z3 + 127)

= (3z + 9)[z2(3z + 9)− 4(z3 + 127)]

= −(3z + 9)(z3 − 9z2 + 508) .

Note that z3 − 9z2 + 508 = z2(z − 9) + 508 is nonnegative if and only if z ≥ −5 (z being an integer) and
that 3z + 9 is nonnegative if and only if z ≥ −3. Hence the discriminant is nonnegative if and only if
z = −3,−4,−5. ¿From the quadratic equation, we have that z3 + 127 ≡ 0 (mod 3). The only possibility
is z = −4 and this leads to the equation 0 = −3y2 + 12y + 63 = −3(y − 7)(y + 3) and the solutions
(x, y) = (3, 7), (−7,−3).

Solution 2. The equation can be rewritten

(x− y)[(x− y)2 + 3xy] + 9xy = −127

or
u3 + 3v(u+ 3) = −127
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where u = x− y and v = xy. Hence

3v = −u
3 + 127
u+ 3

= −
[
(u2 − 3u+ 9) +

100
u+ 3

]
.

Therefore, u3 + 127 ≡ 0 (mod 3), so that u ≡ 2 (mod 3), and u+ 3 divides 100. The candidates are

u = −103,−28,−13,−7,−4,−1, 2, 17, 47 .

Checking these out leads to the posible solutions.

198. Let p be a prime number and let f(x) be a polynomial of degree d with integer coefficients such that
f(0) = 0 and f(1) = 1 and that, for every positive integer n, f(n) ≡ 0 or f(n) ≡ 1, modulo p. Prove
that d ≥ p− 1. Give an example of such a polynomial.

Solution. Since the polynomial is nonconstant, d ≥ 1, so that the result holds for p = 2. Henceforth,
assume that p is an odd prime. Let 0 ≤ k ≤ p− 2. Consider the polynomial

pk(x) =
x(x− 1)(x− 2) · · · (x− k + 1)(x− k − 1) · · · (x− p+ 2)

k!(p− k − 2)!(−1)p−k
.

We have that pk(k) = 1 and pk(x) = 0 when x = 0, 1, 2, · · · , k − 1, k + 1, · · · , p− 2. Let

g(x) =
p−2∑
k=0

f(k)pk(x) .

Then the degree of g(x) does not exceed p− 2 and g(x) = f(x) for x = 0, 1, 2, · · · , p− 2; in fact, g(x) is the
unique polynomial of degree less than p− 1 that agrees with f at these p− 1 points (why?).

Now

g(p− 1) =
p−2∑
k=0

(−1)p−k
(p− 1)!

k!(p− k − 1)!
f(k) =

p−2∑
k=0

(−1)p−k
(
p− 1
k

)
f(k) .

Since
(
p−1
k

)
=
(
p
k

)
−
(
p−1
k−1

)
and

(
p
k

)
≡ 0 (mod p) for 1 ≤ k ≤ p − 1, and induction argument yields that(

p−1
k

)
≡ (−1)k for 1 ≤ k ≤ p− 1, so that

g(p− 1) ≡ (−1)p
p−2∑
k=0

f(k)

(mod p). Since f(0) = 0 and f(1) = 1, it follows that
∑p−2
k=0 f(k) is congruent to some number between 1

and p− 2 inclusive, so that g(p− 1) 6≡ 0 and g(p− 1) 6≡ 1 (mod p). Hence f(p− 1) 6= g(p− 1), so that f and
g are distinct polynomials. Thus, the degree of g exceeds p− 2 as desired.

By Fermat’s Little Theorem, the polynomial xp−1 satisfies the condition.

Solution 2. [M. Guay-Paquet] Let

h(x) = f(x) + f(2x) + · · ·+ f((p− 1)x) .

Then h(1) 6≡ 0 (mod p) and h(0) = 0. The degree of h is equal to d, the degree of f .

Let x 6≡ 0 (mod p). Then (x, 2x, 3x, · · · , (p − 1)x) is a permutation of (1, 2, 3, · · · , p − 1), so that
h(x) ≡ h(1) (mod p).

Suppose that g(x) = h(x)−h(1). The degree of g is equal to d, g(0) ≡ −h(1) 6≡ 0 (mod p) and g(x) ≡ 0
whenever x 6≡ 0 (mod p). Therefore, g(x) differs from a polynomial of the form k(x−1)(x−2) · · · (x−p− 1)
by a polynomial whose coefficients are multiples of p. Since k 6≡ 0 (mod p) (check out the value at 0), the
coefficient of xk−1 must be nonzero, and so d ≥ p− 1, as desired.
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