Solutions for the December Problems

192. Let ABC be a triangle, D be the midpoint of AB and E a point on the side AC for which AE = 2FEC.
Prove that BE bisects the segment C'D.

In the following solutions, F' is the intersection point of BE and CD.

Solution 1. Let G be the midpoint of AE. Then AG = GE = EC and DG|BE. In triangle ADC,
DG||FE and GE = EC, from which it follows that DF = FC, as required.

Solution 2. Let u = [ADF] = [BDF] (where |- - -] denotes area), v = [AFE], w = [CFE] and z = [BFC].
Then 2u+v = 2(w + 2z) and v = 2w, whence 2u = 2z and u = z. It follows from this (two triangles with the
same height and equal collinear bases) that F' is the midpoint of CD.

Solution 3. By Menelaus’ Theorem, applied to triangle AC'D and transversal BF'E,
CE AB DF _

EA BD FC

so that % - (=2) - (DF/FC) = —1 and DF = FC, as desired.

7]_7

Solution 4. [T. Yue] Let K be the midpoint of AC; then BC = 2DK and BC||DK. Suppose that BE
produced and DK produced meet at H. Since triangles EBC and FHK are similar and EC = 2FK, it
follows that BC = 2K H and so DH = BC. Thus, DHCB is a parallelogram whose diagonals BH and C'D
must bisect each other. The result follows.

Solution 5. Place the triangle in the cartesian plane so that B ~ (0,0), C' ~ (3,0) and A ~ (6a, 6b). Then
D ~ (3a,3b), E ~ (2(a+1),2b) and the lines BE and and CD have the respective equations y = bz/(a+ 1)
and y = b(z — 3)/(a — 1). These lines intersect at the point ((3/2)(a + 1), (3/2)b), and the result follows.

Solution 6. [L. Chen] [BDE] = [ADE] = {[ABE] = [BEC]. Let M and N be the respective feet of the
perpendiculars from D and C to BE. Then [BDE]| = [BEC]| = DM = CN. Since DMF and CNF are
similar right triangles with DM = CN, they are congruent and so DF = CF.

Solution 7. [F. Chung; Y. Jean] As in the previous solution, [BDE] = [BEC]. Therefore,
DF : FC = [DEF) : [CEF) = [DBF) : [CBF| = ([DEF) + [DBF)) : (CEF] + [CBF))
= |[BDE]:[BEC]|=1:1.
Solution 8. [Y. Wei| Let U be a point on BC' such that DU||AC. Suppose that DU and BFE intersect

in V. Then 2EC = AE = 2DV, so that DV = EC. Also /VDF = /ECF abd /DFV = /ECF, so that
triangles DV F and CEF are congruent. Hence DF = FC.

Solution 9. Let AF produced meet BC' at L. By Ceva’s Theorem,

AD BL CE _ 1

DB LC AE
whence BL = 2LC and, so, LE||AB. Since the triangles ABC and ELC are similar with factor 3, AB = 3EL.
Let EL intersect CD at M. Then the triangles AFB and LFE are similar, so that FD = 3F M. But,

)

FD+FM+ MC=DC=3MC =2FM=MC=FC=FM+MC=3FM =FD ,
as desired.
Solution 10. [H. Lee] Let u:D_B), V:E?‘, a:ﬁ, /\a:ﬁ, b=CF and ub:F_D). Then

a+ub+u=0
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and
b+Xa+v=0.

Hence
u=—-a—pb and v=-b-)a.

Therefore, from triangle ABFE,

0=(A+1la—2v+2u
=(A+1)a+2b+2Xa—2a—2ub
=(BA—1a+2(1— b .

Since {a, b} is a linearly independent set, A = 1/3 and pu = 1, yielding the desired result.

Solution 11. [M. Zaharia] Place masses 1, 1, 2, respectively, at the vertices A, B, C. We locate the
centre of gravity of these masses in two ways. Since the masses at A and B have their centre of gravity at
D, we can get an equivalent system by replacing the masses at A and B by a mass 2 at the point D. The
centre of gravity of the original set-up is equal to the centre of gravity of masses of 2 placed at each of D
and C, namely at the midpoint of C'D.

On the other hand, the centre of gravity of the masses at A and C is at E. So the centre of gravity
of the original set-up is equal to the centre of gravity of a mass 3 located at E and a mass 1 located at B,
namely on the segment BE (at the point F for which BF = 3FFE). Since both BE and C'D contain the
centre of gravity of the original set-up, the result follows.

Solution 12. Place the triangle in the complex plane with C' at 0, B at 12z and A at 12. Then D is
located at 6(z+1) and E at 4. Let P be the midpoint 3(z+ 1) of CD. Then, BP and PFE are collinear since

122 —3(z+1) =3(32 — 1) = 3[3(z + 1) — 4] ,

i.e., the vector BP is a real multiple of PE. The result follows.

193. Determine the volume of an isosceles tetrahedron for which the pairs of opposite edges have lengths a,
b, c¢. Check your answer independently for a regular tetrahedron.

Solution 1. The edges of the tetrahedron can be realized as the diagonals of the six faces of a rectangular
parallelepiped with edges of length u, v, w in such a way that a® = v? + w?, b*> = u? + w? and ¢? = u? + 2.
The tetrahedran can be obtained from the parallelepiped by trimming away four triangular pyramids each
with three mutually perpendicular faces (surrounding a corner of the parallelepiped) and three pairwise
orthogonal edges of lengths u, v, w. Hence the volume of the tetrahedron is equal to

wow — 4((1/6)vvw) = (1/3)uvw .

JFrom the foregoing equations, 2u? = b? + ¢ — a?, 2v? = ¢ + a? — b? and 2w? = a? + b*> — 2. (By
laying out the tetrahedron flat, we see that the triangle of sides a, b, ¢ is acute and the right sides of these
equations are indeed positive.) It follows that the volume of the tetrahedron is

2
% B2+ c2—a®)(2+a?—b?)(a®+b%—c?).

In the case of a regular tetrahedron of side 1, the height is equal to /2/3 and the area of a side is equal
to v/3/4, and the formula checks out.

Solution 2. [D. Yu] Let the base of the tetrahedron be triangle ABC, eith a = |BC| = |AD|, b =
|AC| = |BD]|, ¢ = |AB| = |CDJ; let P be the foot of the perpendicular from D to the plane of ABC and let
h = |DP|. Then |AP| = va? — h?, |BP| = vb?> — h?, |CP| = V¢ — h2.
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Suppose that « = /BCP and § = Z/ACP. Then using the Law of Cosines on triangles BCP, ACP and

ABC, we obtain that
a2 42 — b2

cosq = ———
2av/ c? — h?
b2 +c?—a?
cosff= ———m
20v/c? — h?
and 2, g2 )
a®+0° —c
cos(a + 3) = T oab
whence
a2 + b2 — 2 B
2ab B
(a® + =02 (b + 2 — a?) — \/4a%(c2 — h?) — (a® + 2 — b2)2/4b2(c® — h2) — (b2 + 2 — a?)?
4ab(c® — h?) '

Shifting terms and squaring leads to
[2(a®+b*—c?) (2 —h?)—(a®+2—=b?) (b*+c* —a?)]? = [4a*(® —h?)—(a®+c2—b?)?][4b* (2 —h?) — (b*+c*—a?)?] .
Withu =02 +c? —a?, v=c?+a®>—-b% w=a?+b>—?, 2 =c?® — h?, this can be rendered

0 = 2wz — wv]?® — [4a’z — v?][4b*2 — u?)

= 2[4(w? — 4a*V?)z — 4(uvw — a*u?® — b*v?)]

so that
9 9 a?u? + b20? — ww
¢ —h"=z= 55 5
4a2b? —w
and
B2 4a?b%c? + uwvw — a?u? — b*v? — 2w?
4a2b? — w? '

Now

40?0 —w? = —at = b* — ¢ 4 200 4 202 4 20°¢?
=(a+b+c)la+b—c)(b+c—a)(c+a—Db)
=165% ,
where S is the area of triangle ABC.

Now consider the numerator of h2. Its value when w = a? +b? — ¢? is set equal to 0 is 4a?b?c? — a®u? —

b2v? = 4a?b?c® — a®(2b%) — b*(2a®) = 0, so that w divides the numerator. So also do u and v. Hence the
numerator of degree 6 in a, b, c must be a multiple of uvw, also of degree 6 in a, b, c. Hence the numerator
is a multiple of uvw. Comparing the coefficients of a® (say) gives that the numerator must be 2uvw. Hence

9  2uvw  uvw

T 1682 852

The volume V' of the tetrahedron satisfies

V2 <Sh)2 _S%R? ww
=5 ) =

9 727

whence

\/uvw72uvw
6v2 12 7
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The checking for the tetrahedron proceeds as before.

194. Let ABC be a triangle with incentre I. Let M be the midpoint of BC, U be the intersection of
AT produced with BC, D be the foot of the perpendicular from I to BC and P be the foot of the
perpendicular from A to BC'. Prove that

\PD||DM| = |DU||PM]| .

Solution 1. Suppose that the lengths of the sides of the triangle are a, b and ¢, using the conventional
notation. Then the distance from B of the following points on the side BC are given by (B,0), (C,a),
(M,a/2), (U,ca/(b+c)), (D,(a+c—0b)/2) and (P,ccos B) = (P, (a® + ¢ — b?)/(2a)). One can then verify
the desired relation by calculation.

Solution 2. [L. Chen] Let the side lengths of the triangle be a, b, ¢, as conventional, and, wolog, suppose
that ¢ < b. Let w = |BP| and v = |PC|. Then, equating two expressions for the area of the triangle, with
r = |ID] as the inradius, we find that |AP| = 2rs/a. From similar triangle, we have that

|PU|  |AP| _§_1+b+c
|DU| ~ |ID| a a ’
whence
|PD|  b+c
IDU| a

Now |PM| = (a/2) —u = (v—u)/2 and |DM| = (b — ¢)/2. Hence

|[PM|  v—u
IDM|  b—c

By Pythagoras’ Theorem, ¢ — u? = b?> — v2, whence

v—u b+c_b+c

b—c v+u a

and the result follows.

195. Let ABCD be a convex quadrilateral and let the midpoints of AC and BD be P and @ respectively,
Prove that
|AB|* + |BC|* + |CD|? + |DA|?> = |AC|* + |BD|* + 4| PQ|* .

Solution 1. Let X denote the vector from an origin to a point X. Then, vectorially, it can be verified
that

(A-B)-(A=B)+(B-C)-(B-C)+(C—-D)-(C—=D)+ (D - A)-(D - A)
-(A-C)-(A-C)-(B-D)-(B-D)
= -24.B—2B-C—-2C-D—-2D-A+2A-C+2B-D+ A?>+ B?> +C? + D?
A+C B+D A+C B+D
:4 2 2 )( 2 2 )’

which yields the desired result.

Solution 2. [T. Yin] We use the result that for any parallelogram KLMN, 2|KL|>+2|LM|* = |[KM|*+
|LN|?. This is straightforward to verify using the Law of Cosines, for example. Let W, X, Y, Z be the
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respective midpoints of the sides AB, BC, CD, DA. Using the fact that all of WXY Z, PXQZ and PWQY
are parallelograms, we have that

|AB|*> + |BC|* + |CD|? + |DA|? = 4[|PX|* + |PW|* + |PZ* + |PY |]
=2[|PQP +|XZ|” + |PQ* + WY ]
=4|PQ]* +2[|XZ)? + WY ]
=4 PQI? +4[[WZ]* + |WX|?]
=4|PQJ?* + |BD|? + |AC|? .

196. Determine five values of p for which the polynomial z2 + 2002z — 1002p has integer roots.

Answer. Here are some values of (p;u,v) with u and v the corresponding roots: (0;0,—2002),
(4;2,—-2004), (784;336,—2338), (1780; 668, —2670), (3004; 2002, —3004), (3012;1004, —3006),
(4460; 1338, —3340), (8012;2004, —4006), (8024; 2006, —4008), (—556; —334, —1668),

(—1000; —1000, —1002).

Solution 1. If x satisfies the equation %+ 2002z —1002p = 0, then we must have p = z(z+2002)/(1002).
If we choose integers x for which x(z 4+ 2002) is a multiple of 1002, then this value of p will be an integer
that yields a quadratic with two integer roots, namely x and —2002 — z. One way to do this is to select
either = 0 or = 2 (mod 1002). Observing that 1002 = 2 x 3 x 167, we can also try to make z = 0 (mod
167) and 2 = 2 (mod 6). For example, z = 668 works. We can also try z = 2 (mod 167) and = = 0 (mod 6);
in this case, x = 336 works.

Solution 2. The discriminant of the quadratic is 4 times 10012 4+ 1002p. Suppose that p is selected to
make this equal to a square ¢2. Then we have that

1002p = ¢* — 1001% = (¢ — 1001)(q + 1001) .

We select g so that either ¢ — 1001 or ¢ + 1001 is divisible by 1002. For example g = 2003, 1, 3005, 4007 all
work. We can also make one factor divisible by 667 and the other by 6.

197. Determine all integers = and y that satisfy the equation 3 4 9zy 4 127 = y3.

Solution 1. Let z = y + z. Then the equation becomes (3z + 9)y? + (322 + 92)y + (22 +127) = 0, a
quadratic in y whose discriminant is equal to

(32 +9)%2% —4(32 + 9)(2* + 127)
= (32 +9)[2%(32 +9) — 4(2* + 127)]
= —(3249)(2* — 92 +508) .
Note that 2% — 922 + 508 = 2%(z — 9) + 508 is nonnegative if and only if 2 > —5 (z being an integer) and
that 3z + 9 is nonnegative if and only if 2 > —3. Hence the discriminant is nonnegative if and only if
z = —3,—4,—5. ;From the quadratic equation, we have that 2% + 127 = 0 (mod 3). The only possibility

is z = —4 and this leads to the equation 0 = —3y* + 12y + 63 = —3(y — 7)(y + 3) and the solutions
(ZC, y) = (37 7)3 (_77 _3>

Solution 2. The equation can be rewritten
(x = y)[(z — y)* + 3zy] + 92y = —127

or
u® + 3v(u +3) = —127
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where v = z — y and v = xy. Hence

ud + 127 9 100
- == -3 9 — .
u+3 (u et )+u+3

3v =
Therefore, u® + 127 = 0 (mod 3), so that v = 2 (mod 3), and u + 3 divides 100. The candidates are
w=—103,—28, —13,—7, —4,—1,2,17, 47 .

Checking these out leads to the posible solutions.

198. Let p be a prime number and let f(z) be a polynomial of degree d with integer coefficients such that
f(0) =0 and f(1) = 1 and that, for every positive integer n, f(n) = 0 or f(n) = 1, modulo p. Prove
that d > p — 1. Give an example of such a polynomial.

Solution. Since the polynomial is nonconstant, d > 1, so that the result holds for p = 2. Henceforth,
assume that p is an odd prime. Let 0 < k < p — 2. Consider the polynomial

(x)_;z:(x—1)(x—2)~--(17—k—|—1)(:1:—k—1)~-(x—p—|—2)
PrLE) = Kl(p— k — 2)I(—1)p—F

We have that pi(k) =1 and pg(z) =0 when 2 =0,1,2,---, k—1,k+1,---,p — 2. Let

Then the degree of g(x) does not exceed p — 2 and g(z) = f(x) for x =0,1,2,---,p — 2; in fact, g(x) is the
unique polynomial of degree less than p — 1 that agrees with f at these p — 1 points (why?).

Now
ek (=) S yyek (P
o0-1) = 1P g = (")

Since pgl) =) - (ij) and (}) = 0 (mod p) for 1 < k < p — 1, and induction argument yields that
(”*1) = (—1)"for 1 <k <p—1,so that

p—2

glp—1)= (=P Y f(k)

k=0

(mod p). Since f(0) = 0 and f(1) = 1, it follows that ZZ;(Q) f(k) is congruent to some number between 1
and p — 2 inclusive, so that g(p—1) Z0 and g(p—1) £ 1 (mod p). Hence f(p—1) # g(p— 1), so that f and
g are distinct polynomials. Thus, the degree of g exceeds p — 2 as desired.

By Fermat’s Little Theorem, the polynomial zP~! satisfies the condition.
Solution 2. [M. Guay-Paquet] Let
ha) = f(z) + f22) +---+ f((p - D2) .
Then h(1) # 0 (mod p) and h(0) = 0. The degree of h is equal to d, the degree of f.

Let ¢ # 0 (mod p). Then (xz,2x,3z,---,(p — 1)x) is a permutation of (1,2,3,---,p — 1), so that
h(z) = h(1) (mod p).

Suppose that g(z) = h(z) — h(1). The degree of g is equal to d, g(0) = —h(1) # 0 (mod p) and g(z) =0
whenever 2 #Z 0 (mod p). Therefore, g(z) differs from a polynomial of the form k(z—1)(z —2)--- (z —p — 1)

by a polynomial whose coefficients are multiples of p. Since k Z 0 (mod p) (check out the value at 0), the
coefficient of z*~! must be nonzero, and so d > p — 1, as desired.
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