
Solutions
109. Suppose that

x2 + y2

x2 − y2
+
x2 − y2

x2 + y2
= k .

Find, in terms of k, the value of the expression

x8 + y8

x8 − y8
+
x8 − y8

x8 + y8
.

Solution 1. Simplifying, we obtain that

k =
2(x4 + y4)
x4 − y4

,

and, by extension, that

k2 + 4
2k

=
k

2
+

2
k

=
x4 + y4

x4 − y4
+
x4 − y4

x4 + y4
=

2(x8 + y8)
x8 − y8

.

Continuing on, we find that

x8 + y8

x8 − y8
+
x8 − y8

x8 + y8
=

2(x16 + y16)
x16 − y16

=
k2 + 4

4k
+

4k
k2 + 4

=
k4 + 24k2 + 16

4k(k2 + 4)
.

Comment. R. Barrington Leigh defined a formula

R =
a+ b

a− b
+
a− b
a+ b

= 2 · a
2 + b2

a2 − b2

for a 6= ±b which he then applied to (a, b) = (x2, y2), (x4, y4).

110. Given a triangle ABC with an area of 1. Let n > 1 be a natural number. Suppose that M is a point on
the side AB with AB = nAM , N is a point on the side BC with BC = nBN , and Q is a point on the
side CA with CA = nCQ. Suppose also that {T} = AN ∩CM , {R} = BQ∩AN and {S} = CM ∩BQ,
where ∩ signifies that the singleton is the intersection of the indicated segments. Find the area of the
triangle TRS in terms of n.

Solution 1. [R. Furmaniak, Y. Ren] The area of a triangle XY Z will be denoted by [XY Z]. Consider
the triangle ABQ and the line MC that intersects AB at M , BQ at S and AQ at the external point C. By
Menelaus’ Theorem for the triangle ABQ and transversal MC,

1 =
BM

MA
· AC
QC
· QS
SB

= (n− 1)n
QS

SB
=⇒ SB

QS
= (n− 1)n .

Observe the triangles BSC and QSC. Since the heights from C to the opposite sides SB and QS coincide,
then

[BSC]
[QSC]

=
SB

QS
= (n− 1)n =⇒ [BSC] = (n− 1)n[QSC] .

Examining triangles QSC and QBC, we similarly find that

[QSC]
[QBC]

=
QS

QB
=

QS

QS + SB
=

1
(n− 1)n+ 1

=
1

n2 − n+ 1

1



=⇒ [QSC] =
1

n2 − n+ 1
· [QBC] .

Since the heights of triangles QBC and ABC from B to QC and AC coincide, it follows that

[QBC]
[ABC]

=
QC

AB
=

1
n

=⇒ [QBC] =
1
n
· [ABC] =

1
n

=⇒ [QSC] =
1

n2 − n+ 1
· 1
n

=
1

n(n2 − n+ 1)

=⇒ [BSC] =
(n− 1)n

n(n2 − n+ 1)
=

n− 1
n2 − n+ 1

.

Similarly,

[TAC] = [RBA] =
n− 1

n2 − n+ 1
.

Now

[TSR] = [ABC]− [BSC]− [TAC]− [RBA] = 1− 3(n− 1)
n2 − n+ 1

=
(n− 2)2

n2 − n+ 1
.

Solution 2. [M. Butler] Using Menelaus’ Theorem with triangle BQC and transversal ARN , we find
that

BR

RQ
· QA
AC
· CN
NB

= −1

so that
BR

RQ
· 1− n

n
· n− 1

1
= −1

=⇒ BR =
n

(n− 1)2
·RQ .

Thus,
n− 1
n

= [ABQ] = [ARB] + [ARQ]

=
[
1 +

(n− 1)2

n

]
[ARB]

=
[
n2 − n+ 1

n

]
[ARB]

whence
[ARB] =

n− 1
n2 − n+ 1

.

Therefore

[RST ] = 1− 3(n− 1)
n2 − n+ 1

=
(n− 2)2

n2 − n+ 1
.

Solution 3. Let a = [AMT ], b = [BNR], c = [CQS], x = [BRT ], y = [CSR], z = [ATS] and d = [RST ].
Then using BM = (n− 1)AM , [BRM ] = (n− 1)a,

x+ d = [BTS] = (n− 1)[ATS] = (n− 1)z

and
nb+ y = [BRC] + [CSR] = [BSC] = (n− 1)[ASC] = (n− 1)nc .

Analogously, from CN = (n− 1)BN and AQ = (n− 1)CQ, we get

x+ d = (n− 1)z, y + d = (n− 1)x, z + d = (n− 1)y
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and
nb+ y = (n2 − n)c, nc+ z = (n2 − n)a, na+ x = (n2 − n)b ,

whence
x+ y + x+ 3d = (n− 1)(x+ y + z) or 3d = (n− 2)(x+ y + z)

and
n(a+ b+ c) + (x+ y + z) = (n2 − n)(a+ b+ c) or x+ y + z = (n2 − 2n)(a+ b+ c) .

¿From 1 = n[na+ x+ b] = n[nb+ y + c] = n[nc+ z + a], we find that

3 = n2(a+ b+ c) + n(x+ y + z) + n(a+ b+ c)
= n(n+ 1)(a+ b+ c) + n(x+ y + z)

=
[
n+ 1
n− 2

+ n

]
(x+ y + z)

=
[
n2 − n+ 1
n− 2

]
(x+ y + z) ,

whence

d =
(n− 2)2

n2 − n+ 1
.

Solution 4. Since the ratio of areas remains invariant under shear transformations and dilations, we
may assume that the triangle is right isosceles. Assign coordinates: A ∼ (0, 0), B ∼ (0, 1), C = (1, 0),
M ∼ (0, 1/n),

N ∼
(

1
n
,
n− 1
n

)
Q ∼

(
n− 1
n

, 0
)
.

Then

R ∼
(

n− 1
n2 − n+ 1

,
(n− 1)2

n2 − n+ 1

)
S ∼

(
(n− 1)2

n2 − n+ 1
,

1
n2 − n+ 1

)
and

T ∼
(

1
n2 − n+ 1

,
n− 1

n2 − n+ 1

)
.

A computation of the area of ∆RST now yields the result.

Comment. Considering how reasonable the result it, H. Lee noted that when n > 1, then (n − 2)2 <
n2 − n + 1, so that [TSR] < 1 as expected, and also noted that when n = 2, we get the special case of the
medians that intersect in a common point and yield [TSR] = 0.

111. (a) Are there four different numbers, not exceeding 10, for which the sum of any three is a prime number?

(b) Are there five different natural numbers such that the sum of every three of them is a prime number?

Solution. [R. Barrington Leigh] (a) Yes, there are four such numbers. The three-member sums of the
set {1, 3, 7, 9} are the primes 11, 13, 17, 19.

(b) No. We prove the statement by contradiction. Suppose that there are five different natural numbers
for which every sum of three is prime. As the numbers are distinct and positive, each such sum must be at
least 1 + 2 + 3 = 6, and so cannot be a multiple of 3. Consider the five numbers, modulo 3. If there are three
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in the same congruent class, their sum is a multiple of 3. If there is one each congruent to 0, 1, 2 modulo 3,
then the sum of these three is a multiple of 3. Otherwise, there are only two congruence classes represented
with at most two numbers in each, an impossibility. Hence in all cases, there must be three who sum to a
multiple of 3.

Comment. Part (b) need not be framed as a contradiction. One could formulate it as follows: Let five
positive integers be given. Argue that either each congruent class modulo 3 is represented or that some class
is represented by at least three of the numbers. Then note that therefore some three must sum to a multiple
of 3. Observe that 3 itself is not a possible sum. Hence, among every five positive integers, there are three
who add to a nonprime multiple of 3, and simply say that the answer to the question is “no”.

112. Suppose that the measure of angle BAC in the triangle ABC is equal to α. A line passing through the
vertex A is perpendicular to the angle bisector of 6 BAC and intersects the line BC at the point M .
Find the other two angles of the triangle ABC in terms of α, if it is known that BM = BA+AC.

Solution. Let q be the line through A perpendicular to the bisector of angle BAC; this line bisects the
external angle at A. The possibility that q is parallel to BC is precluded by the condition that it intersects
BC at M . Let 6 ABC = β and 6 ACB = γ, Since p is not parallel to BC, β is not equal to γ.

Case i. Suppose that β > γ. Then M intersects BC so that B lies between M and C. Let BA be
produced to D so that AC = AD. Since MB = BA + AC = BA + AD = BD, 6 DMB = 6 MDB and so
6 MDB = 1

2
6 DBC = 1

2β (exterior angle). Since AD = AC, 6 ADC = 6 ACD = 1
2
6 BAC = 1

2α. Since MA
produced bisects 6 DAC, MA produced right bisects DC and so MD = MC. Therefore

γ +
α

2
= 6 MCD = 6 MDC =

β

2
+
α

2
,

whence β = 2γ. Therefore, 180◦ = α+ β + γ = α+ 3γ and

γ =
180◦ − α

3
and β =

360◦ − 2α
3

.

Case ii. Supppose that β < γ. Then M intersects BC so that C lies between B and M . Let BA be
produced to D so that AD = AC. Since AM bisects 6 DAC, it right bisects CD and so triangle MDC is
isosceles. Then 6 ADM = 6 ADC + 6 MDC = 6 ACD + 6 MCD = 6 ACM . Since BM = BA+AC = BD,
6 ACM = 6 ADM = 6 BDM = 6 BMD. Since 6 ACM = α+β (exterior angle), 180◦ = 6 DBM+2 6 BMD =
β+2(α+β), so that β = 1

3 (180◦−2α) and γ = 180◦− 6 ACM = 180◦− (α+β) = 120◦− 1
3α = (360◦−α)/3.

Question. Why cannot you just say the second case can be handled as the first case, by symmetry?

113. Find a function that satisfies all of the following conditions:

(a) f is defined for every positive integer n;

(b) f takes only positive values;

(c) f(4) = 4;

(d)
1

f(1)f(2)
+

1
f(2)f(3)

+ · · ·+ 1
f(n)f(n+ 1)

=
f(n)

f(n+ 1)
.

Solution. [R. Barrington Leigh] The function for which f(n) = n for every positive integer n satisfies the
condition. [Exercise: establish this by induction.] We now show that this is the only example. Substituting
n = 1 into (d) and noting that f(2) 6= 0, we find that f(1)2 = 1, whence f(1) = 1. Applying (d) to two
consecutive values of the argument yields that

f(n)
f(n+ 1)

− f(n− 1)
f(n)

=
1

f(n)f(n+ 1)
,
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whence
[f(n)]2 − 1 = f(n− 1)f(n+ 1) .

Substituting n = 2 and n = 3 into this and noting that f(1) = 1 and f(4) = 4, we find that

[f(2)]2 − 1 = f(3)

and
[f(3)]2 − 1 = 4f(2) ,

whence
0 = [f(2)]4 − 2[f(2)]2 − 4f(2) = f(2)[f(2)− 2]([f(2)]2 + 2f(2) + 2) .

Since the first and third factors are positive for all postive possibilities for f(2), we must have f(2) = 2. As

f(n+ 1) =
[f(n)]2 − 1
f(n− 1)

,

we can prove by induction that f(n) = n for all positive integers n.

114. A natural number is a multiple of 17. Its binary representation (i.e., when written to base 2) contains
exactly three digits equal to 1 and some zeros.

(a) Prove that there are at least six digits equal to 0 in its binary representation.

(b) Prove that, if there are exactly seven digits equal to 0 and three digits equal to 1, then the number
must be even.

Solution 1. (a) If there are fewer than six digits equal to 0 in its binary representation, then the number
must have at most eight digits and be of the form 2a + 2b + 2c where 0 ≤ a < b < c ≤ 7. The first eight
powers of 2 with nonnegative exponent are congruent to 1, 2, 4, 8,−1,−2,−4,−8 modulo 17, and the sum of
any three of these cannot equal to zero and must lie between −14 and 14. Hence it is not possible for three
powers of 2 among the first eight to sum to a multiple of 17. Hence, the number must have at least nine
digits, including three zeros.

(b) Suppose that the number is equal to 2a+2b+2c where 0 ≤ a < b < c ≤ 9. If this number has exactly
10 digits and is odd, then a = 0 and c = 9, so that the number is equal to 1+2b+29 = 513+2b ≡ 3+2b (mod
17). But there is no value of b that will make this vanish, modulo 17. Hence, a 10-digit number divisible by
17 must be even. An example is 2× 172 = 2× (1 + 25 + 28) = (1001000010)2.

Solution 2. [R. Furmaniak] (a) Since 1710 = 100012, any binary number abcd2 with four or fewer digits
multiplied by 17 will yield abcdabcd2. Since the first and last four digits are the same, there must be an
even number of 1s. Thus, any multiple of 17 with exactly three binary digits must be a product of 17 and
a number that has at least 5 binary digits. Every such product must have at least 9 digits, and so at least
three digits equal to 0.

(b) As in Solution 1.
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