
Solutions and comments

61. Let S = 1!2!3! · · · 99!100! (the product of the first 100 factorials). Prove that there exists an integer k
for which 1 ≤ k ≤ 100 and S/k! is a perfect square. Is k unique? (Optional: Is it possible to find such
a number k that exceeds 100?)

Solution 1. Note that, for each positive integer j, (2j − 1)!(2j)! = [(2j − 1)!]2 · 2j. Hence

S =
50∏
j=1

[(2j − 1)!]2[2j] = 25050!
[ 50∏
j=1

(2j − 1)!
]2

,

from which we see that k = 50 is the required number.

We show that k = 50 is the only possibility. First, k cannot exceed 100, for otherwise 101! would be a
factor of k! but not S, and so S/k! would not even be an integer. Let k ≤ 100. The prime 47 does not divide
k! for k ≤ 46 and divides 50! to the first power. Since S/50! is a square, it evidently divides S to an odd
power. So k ≥ 47 in order to get a quotient divisible by 47 to an even power. The prime 53 divides each k!
for k ≥ 53 to the first power and divides S/50!, and so S to an even power. Hence, k ≤ 52.

The prime 17 divides 50! and S/50!, and hence S to an even power, but it divides each of 51! and 52!
to the third power. So we cannot have k = 51 or 52. Finally, look at the prime 2. Suppose that 22u is the
highest power of 2 that divides S/50! and that 2v is the highest power of 2 that divides 50!; then 22u+v is the
highest power of 2 that divides S. The highest power of 2 that divides 48! and 49! is 2v−1 and the highest
power of 2 that divides 46! and 47! is 2v−5. ¿From this, we deduce that 2 divides S/k! to an odd power when
47 ≤ k ≤ 49. The desired uniqueness of k follows.

Solution 2. Let p be a prime exceeding 50. Then p divides each of m! to the first power for p ≤ m ≤ 100,
so that p divides S to the even power 100− (p − 1) = 101 − p. From this, it follows that if 53 ≥ k, p must
divide S/k! to an odd power.

On the other hand, the prime 47 divides each m! with 47 ≤ m ≤ 93 to the first power, and each m! with
94 ≤ m ≤ 100 to the second power, so that it divides S to the power with exponent 54 + 7 = 61. Hence, in
order that it divide S/k! to an even power, we must make k one of the numbers 47, · · · , 52.

By an argument, similar to that used in Solution 1, it can be seen that 2 divides any product of the
form 1!2! · · · (2m− 1)! to an even power and 100! to the power with exponent

b100/2c+ b100/4c+ b100/8c+ b100/16c+ b100/32c+ b100/64c = 50 + 25 + 12 + 6 + 3 + 1 = 97 .

Hence, 2 divides S to an odd power. So we need to divide S by k! which 2 divides to an odd power to get a
perfect square quotient. This reduces the possibilities for k to 50 or 51. Since

S = 299 · 398 · 497 · · · 992 · 100 = (2 · 4 · · · 50)(249 · 349 · 448 · · · 99)2 = 50! · 250(· · ·)2 ,

S/50! is a square, and so S/51! = (S/50!)÷ (51) is not a square. The result follows.

Solution 3. As above, S/(50!) is a square. Suppose that 53 ≤ k ≤ 100. Then 53 divides k!/50! to the
first power, and so k!/50! cannot be square. Hence S/k! = (S/50!)÷ (k!/50!) cannot be square. If k = 51 or
52, then k!/50! is not square, so S/k! cannot be square. Suppose that k ≤ 46. Then 47 divides 50!/k! to the
first power, so that 50!/k! is not square and S/k! = (S/50!)× (50!/k!) cannot be square. If k = 47, 48 or 49,
then 50!/k! is not square and so S/k! is not square. Hence S/k! is square if and only if k = 50 when k ≤ 100.

62. Let n be a positive integer. Show that, with three exceptions, n! + 1 has at least one prime divisor that
exceeds n+ 1.

Solution. Any prime divisor of n! + 1 must be larger than n, since all primes not exceeding n divide n!.
Suppose, if possible, the result fails. Then, the only prime that can divide n! + 1 is n+ 1, so that, for some
positive integer r and nonnegative integer K,

n! + 1 = (n+ 1)r = 1 + rn+Kn2 .
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This happens, for example, when n = 1, 2, 4: 1! + 1 = 2, 2! + 1 = 3, 4! + 1 = 52. Note, however, that the
desired result does hold for n = 3: 3! + 1 = 7.

Henceforth, assume that n exceeds 4. If n is prime, then n+ 1 is composite, so by our initial comment,
all of its prime divisors exceed n + 1. If n is composite and square, then n! is divisible by the four distinct
integers 1, n,

√
n, 2
√
n, while is n is composite and nonsquare with a nontrivial divisor d. then n! is divisible

by the four distinct integers 1, d, n/d, n. Thus, n! is divisible by n2. Suppose, if possible, the result fails,
so that n! + 1 = 1 + rn + Kn2, and 1 ≡ 1 + rn (mod n2). Thus, r must be divisible by n, and, since it is
positive, must exceed n. Hence

(n+ 1)r ≥ (n+ 1)n > (n+ 1)n(n− 1) · · · 1 > n! + 1 ,

a contradiction. The desired result follows.

63. Let n be a positive integer and k a nonnegative integer. Prove that

n! = (n+ k)n −
(
n

1

)
(n+ k − 1)n +

(
n

2

)
(n+ k − 2)n − · · · ±

(
n

n

)
kn .

Solution 1. Recall the Principle of Inclusion-Exclusion: Let S be a set of n objects, and let P1, P2, · · ·,
Pm be m properties such that, for each object x ∈ S and each property Pi, either x has the property Pi or
x does not have the property Pi. Let f(i, j, · · · , k) denote the number of elements of S each of which has
properties Pi, Pj , · · ·, Pk (and possibly others as well). Then the number of elements of S each having none
of the properties P1, P2, · · ·, Pm is

n−
∑

1≤i≤m

f(i) +
∑

1≤i<j≤m

f(i, j)−
∑

1≤i<j<l≤m

f(i, j, l) + · · ·+ (−1)mf(1, 2, · · · ,m) .

We apply this to the problem at hand. Note that an ordered selection of n numbers selected from among
1, 2, · · · , n+ k is a permutation of {1, 2, · · · , n} if and only if it is constrained to contain each of the numbers
1, 2, · · ·, n. Let S be the set of all ordered selections, and we say that a selection has property Pi iff its fails
to include at least i of the numbers 1, 2, · · · , n (1 ≤ i ≤ n). The number of selections with property Pi is the
product of

(
n
i

)
, the number of ways of choosing the i numbers not included and (n+ k− i)n, the number of

ways of choosing entries for the n positions from the remaining n+ k − 1 numbers. The result follows.

Solution 2. We begin with a lemma:

n∑
i=0

(−1)i
(
n

i

)
im =

{
0 (0 ≤ m ≤ n− 1)
(−1)nn! (m = n) .

We use the convention that 00 = 1. To prove this, note first that i(i−1) · · · (i−m) = im+1+bmim+· · ·+b1i+b0
for some integers bi. We use an induction argument on m. The result holds for each positive n and for m = 0,
as the sum is the expansion of (1 − 1)n. It also holds for n = 1, 2 and all relevant m. Fix n ≥ 3. Suppose
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that it holds when m is replaced by k for 0 ≤ k ≤ m ≤ n− 2. Then

n∑
i=0

(−1)i
(
n

i

)
im+1 =

n∑
i=1

(−1)i
(
n

i

)
i(i− 1) · · · (i−m)−

m∑
k=0

bk

n∑
i=0

(−1)i
(
n

i

)
ik

=
n∑

i=m+1

(−1)i
(
n

i

)
i(i− 1) · · · (i−m)− 0

=
n∑

i=m+1

(−1)i
n!i!

i!(n− i)!(i−m− 1)!
=
n−m−1∑
j=0

(−1)m+1+j n!
(n−m− 1− j)!j!

=
n−m−1∑
j=0

(−1)m+1(−1)j
n(n− 1) · · · (n−m)[(n−m− 1)!]

(n−m− 1− j)!j!

= (−1)m+1n(n− 1) · · · (n−m)
n−m−1∑
j=0

(−1)j
(
n−m− 1

j

)
= 0 .

(Note that the j = 0 term is 1, which is consistent with the 00 = 1 convention mentioned earlier.) So∑n
i=0(−1)i

(
n
i

)
im = 0 for 0 ≤ m ≤ n− 1. Now consider the case m = n:

n∑
i=1

(−1)i
(
n

i

)
in =

n∑
i=1

(−1)i
(
n

i

)
i(i− 1) · · · (i− n+ 1)−

n−1∑
k=0

bk

n∑
i=0

(−1)i
(
n

i

)
ik .

Every term in the first sum vanishes except the nth and each term of the second sum vanishes. Hence∑n
i=1(−1)i

(
n
i

)
in = (−1)nn!.

Returning to the problem at hand, we see that the right side of the desired equation is equal to

(n+ k)n −
(
n

1

)
(n+ k − 1)n +

(
n

2

)
(n+ k − 2)n − · · ·+ (−1)n

(
n

n

)
(n+ k − n)n

=
n∑
i=0

(−1)i
(
n

i

)
(n− i+ k)n =

n∑
i=0

(−1)i
(
n

i

) n∑
j=0

(
n

j

)
(n− i)jkn−j

=
n∑
i=0

n∑
j=0

(−1)i
(
n

i

)(
n

j

)
(n− i)jkn−j =

n∑
j=0

(
n

j

)
kn−j

n∑
i=0

(−1)i
(
n

i

)
(n− i)j

=
n∑
j=0

(
n

j

)
kn−j

n∑
i=0

(−1)i
(

n

n− i

)
(n− i)j

=
n∑
j=0

(
n

j

)
kn−j

n∑
i=0

(−1)n(−1)i
(
n

i

)
ij .

When 0 ≤ j ≤ n− 1, the sum
∑n
i=0(−1)i

(
n
n−i
)
(n− i)j =

∑n
i=0(−1)n−i

(
n
i

)
ij vanishes, while, when j = n, it

assunes the value n!. Thus, the right side of the given equation is equal to
(
n
n

)
k0n! = n! as desired.

Solution 3. Let m = n+k, so that m ≥ n, and let the right side of the equation be denoted by R. Then

R = mn −
(
n

1

)
(m− 1)n +

(
n

2

)
(m− 2)n − · · ·+ (−1)i

(
n

i

)
(m− i)n + · · ·+ (−1)n

(
n

n

)
(m− n)n

= mm

[ n∑
j=0

(−1)i
(
n

i

)]
−
(
n

1

)
mn−1

[ n∑
i=1

(−1)ii
(
n

i

)]
+
(
n

2

)
mn−2

[ n∑
i=1

(−1)ii2
(
n

i

)]
+ · · ·

+ (−1)n
(
n

n

)[ n∑
i=1

(−1)iin
(
n

i

)]
.
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Let

f0(x) = (1− x)n =
n∑
i=0

(−1)i
(
n

i

)
xi

and let
fk(x) = xDfk−1(x)

for k ≥ 1, where Df denotes the derivative of a function f . Observe that, from the closed expression for
f0(x), we can establish by induction that

fk(x) =
n∑
i=0

(−1)iik
(
n

i

)
xi

so that R =
∑n
k=0(−1)k

(
n
k

)
mn−kfk(1).

By induction, we establish that

fk(x) = (−1)kn(n− 1) · · · (n− k + 1)xk(1− x)n−k + (1− x)n−k+1gk(x)

for some polynomial gk(x). This is true for k = 1 with g1(x) = 0. Suppose if holds for k = j. Then

f ′j(x) = (−1)jn(n− 1) · · · (n− j + 1)xj−1(1− x)n−j − (−1)jn(n− 1) · · · (n− j + 1)(n− j)xj(1− x)n−j−1

− (n− j + 1)(1− x)n−jgj(x) + (1− x)n−j+1g′j(x) ,

whence

fj+1(x) = (−1)j+1n(n1) · · · (n− j)xj(1− x)n−(j+1) + (1− x)n−(j+1)+1[(−1)jn(n− 1) · · · (n− j + 1)xj

− (n− j + 1)xgk(x) + x(1− x)g′j(x)]

and we obtain the desired representation by induction. Then for 1 ≤ k ≤ n − 1, fk(1) = 0 while fn(1) =
(−1)nn!. Hence R = (−1)nfn(1) = n!.

64. Let M be a point in the interior of triangle ABC, and suppose that D, E, F are respective points on
the side BC, CA, AB, which all pass through M . (In technical terms, they are cevians.) Suppose that
the areas and the perimeters of the triangles BMD, CME, AMF are equal. Prove that triangle ABC
must be equilateral.

Solution. [L. Lessard] Let the common area of the triangles BMD, CME and AMF be a and let their
common perimeter be p. Let the area and perimeter of ∆AME be u and x respectively, of ∆MFB be v
and y respectively, and of ∆CMD be w and z respectively.

By considering pairs of triangles with equal heights, we find that

AF

FB
=
a

v
=

2a+ u

v + a+ w
=
a+ u

a+ w
,

BD

DC
=
a

w
=

2a+ v

u+ a+ w
=
a+ v

a+ u
,

CE

EA
=
a

u
=

2a+ w

u+ a+ v
=
a+ w

a+ v
.

¿From these three sets of equations, we deduce that

a3

uvw
= 1 ;
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a2 + (w − u)a− uv = 0 ,

a2 + (u− w)a− vw = 0 ,

a2 + (v − u)a− uw = 0 ;

whence
a3 = uvw and 3a2 = uv + vw + uw .

This means that uv, vw, uw are three positive numbers whose geometric and arithmetic means are both equal
to a2. Hence a2 = uv = vw = uw, so that u = v = w = a. It follows that AF = FB, BD = DC, CE = EA,
so that AD, BE and CF are medians and M is the centroid.

Wolog, suppose that AB ≥ BC ≥ CA. Since AB ≥ BC, 6 AEB ≥ 90◦, and so AM ≥ MC. Thus
x ≥ p. Similarly, y ≥ p and p ≥ z.

Consider triangles BMD and AME. We have BD ≥ AE, BM ≥ AM , ME = 1
2BM and MD = 1

2AM .
Therefore

p− x = (BD +MD +BM)− (AE +ME +AM) = (BD −AE) +
1
2

(BM −AM) ≥ 0

and so p ≥ x. Since also x ≥ p, we have that p = x. But this implies that AM = MC, so that ME ⊥ AC
and AB = BC. Since BE is now an axis of a reflection which interchanges A and C, as well as F and D, it
follows that p = z and p = y as well. Thus, AB = AC and AC = BC. Thus, the triangle is equilateral.

65. Suppose that XTY is a straight line and that TU and TV are two rays emanating from T for which
6 XTU = 6 UTV = 6 V TY = 60◦. Suppose that P , Q and R are respective points on the rays TY , TU
and TV for which PQ = PR. Prove that 6 QPR = 60◦.

Solution 1. Let R be a rotation of 60◦ about T that takes the ray TU to TV . Then, if R transforms
Q→ Q′ and P → P ′, then Q′ lies on TV and the line Q′P ′ makes an angle of 60◦ with QP . Because of the
rotation, 6 P ′TP = 60◦ and TP ′ = TP , whence TP ′P is an equilateral triangle.

Since 6 Q′TP = 6 TPP ′ = 60◦, TV ‖P ′P . Let T be the translation that takes P ′ to P . It takes Q′ to a
point Q′′ on the ray TV , and PQ′′ = P ′Q′ = PQ. Hence Q′′ can be none other than the point R [why?],
and the result follows.

Solution 2. The reflection in the line XY takes P → P , Q → Q′ and R → R′. Triangles PQR′ and
PQ′R are congruent and isosceles, so that 6 TQP = 6 TQ′P = 6 TRP (since PQ′ = PR). Hence TQRP is
a concyclic quadrilateral, whence 6 QPR = 6 QTR = 60◦.

Solution 3. [S. Niu] Let S be a point on TU for which SR‖XY ; observe that ∆RST is equilateral. We
first show that Q lies between S and T . For, if S were between Q and T , then 6 PSQ would be obtuse and
PQ > PS > PR (since 6 PRS > 60◦ > 6 PSR in ∆PRS), a contradiction.

The rotation of 60◦ with centre R that takes S onto T takes ray RQ onto a ray through R that intersects
TY in M . Consider triangles RSQ and RTM . Since 6 RST = 6 RTM = 60◦, 6 SRQ = 60◦ − 6 QRT =
6 TRM and SR = TR, we have that ∆RSQ ≡ ∆RTM and RQ = RM . (ASA) Since 6 QRM = 60◦,
∆RQM is equilateral and RM = RQ. Hence M and P are both equidistant from Q and R, and so at the
intersection of TY and the right bisector of QR. Thus, M = P and the result follows.

Solution 4. [H. Pan] Let Q′ and R′ be the respective reflections of Q and R with respect to the axis
XY . Since 6 RTR′ = 120◦ and TR = TR′, 6 QR′R = 6 TR′R = 30◦. Since Q,R,Q′, R′, lie on a circle with
centre P , 6 QPR = 2 6 QR′R = 60◦, as desired.

Solution 5. [R. Barrington Leigh] Let W be a point on TV such that 6 WPQ = 60◦ = 6 WTU . [Why
does such a point W exist?] Then WQTP is a concyclic quadrilateral so that 6 QWP = 180◦− 6 QTP = 60◦

and ∆PWQ is equilateral. Hence PW = PQ = PR.
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Suppose W 6= R. If R is farther away from T than W , then 6 RPT > 6 WPT > 6 WPQ = 60◦ ⇒ 60◦ >
6 TRP = 6 RWP > 60◦, a contradiction. If W is farther away from T than R, then 6 WPT > 6 WPQ =
60◦ ⇒ 60◦ > 6 RWP = 6 WRP > 60◦, again a contradiction. So R = W and the result follows.

Solution 6. [M. Holmes] Let the circle through T, P,Q intersect TV in N . Then 6 QNP = 180◦ −
6 QTP = 60◦. Since 6 PQN = 6 PTN = 60◦, ∆PQN is equilateral so that PN = PQ. Suppose, if possible,
that R 6= N . Then N and R are two points on TV equidistant from P . Since 6 PNT < 6 PNQ = 60◦ and
∆PNR is isosceles, we have that 6 PNR < 90◦, so N cannot lie between T and R, and 6 PRN = 6 PNR =
6 PNT < 60◦. Since 6 PTN = 60◦, we conclude that T must lie between R and N , which transgresses the
condition of the problem. Hence R and N must coincide and the result follows.

Solution 7. [P. Cheng] Determine S on TU and Z on TY for which SR‖XY and 6 QRZ = 60◦. Observe
that 6 TSR = 6 SRT = 60◦ and SR = RT .

Consider triangles SRQ and TRZ. 6 SRQ = 6 SRT − 6 QRT = 6 QRZ − 6 QRT = 6 TRZ; 6 QSR =
60◦ = 6 ZTR, so that ∆SRQ = ∆TRZ (ASA).

Hence RZ = RQ ⇒ ∆RQZ is equilateral ⇒ RZ = ZQ and 6 RZQ = 60◦. Now, both P and Z lie on
the intersection of TY and the right bisector of QR, so they must coincide: P = Z. The result follows.

Solution 8. Let the perpendicular, produced, from Q to XY meet V T , produced, in S. Then 6 XTS =
6 V TY = 60◦ = 6 XTU , from which is can be deduced that TX right bisects QS. Hence PS = PQ = PR,
so that Q,R, S are all on the same circle with centre P .

Since 6 QTS = 120◦, we have that 6 SQT = 6 QSR = 30◦, so that QR must subtend an angle of 60◦ at
the centre P of the circle. The desired result follows.

Solution 9. [A.Siu] Let the right bisector of QR meet the circumcircle of TQR on the same side of
QR at T in S. Since 6 QSR = 6 QTR = 60◦ and QS = QR, 6 SQR = 6 SRQ = 60◦. Hence 6 STQ =
180◦ − 6 SRQ = 120◦. But 6 Y TQ = 120◦, so S must lie on TY . It follows that S = P .

Solution 10. Assign coordinates with the origin at T and the x−axis along XY . The the respective
coordinates of Q and R have the form (u,−

√
3u) and (v,

√
3v) for some real u and v. Let the coordinates of

P be (w, 0). Then PQ = PR yields that w = 2(u+ v). [Exercise: work it out.]

|PQ|2 − |QR|2 = (u− w)2 + 3u2 − (u− v)2 − 3(u+ v)2

= w2 − 2uw − 4v(u+ v) = w2 − 2uw − 2vw

= w2 − 2(u+ v)w = 0 .

Hence PQ = QR = PR and ∆PQR is equilateral. Therefore 6 QPR = 60◦.

Solution 11. [J.Y. Jin] Let C be the circumcircle of ∆PQR. If T lies strictly inside C, then 60◦ =
6 QTR > 6 QPR and 60◦ = 6 PTR > 6 PQR = 6 PRQ. Thus, all three angle of ∆PQR would be less
than 60◦, which is not possible. Similarly, if T lies strictly outside C, then 60◦ = 6 QTR < 6 QPR and
60◦ = 6 PTR < 6 PQR = 6 PRQ, so that all three angles of ∆PQR would exceed 60◦, again not possible.
Thus T must be on C, whence 6 QPR = 6 QTR = 60◦.

Solution 12. [C. Lau] By the Sine Law,

sin 6 TQP
|TP |

=
sin 120◦

|PQ|
=

sin 60◦

|PR|
=

sin 6 TRP
|TP |

,

whence sin 6 TQP = sin 6 TRP . Since 6 QTP , in triangle QTP is obtuse, 6 TQP is acute.

Suppose, if possible, that 6 TRP is obtuse. Then, in triangle TPR, TP would be the longest side, so
PR < TP . But in triangle TQP , PQ is the longest side, so PQ > TP , and so PQ 6= PR, contrary to
hypothesis. Hence 6 TRP is acute. Therefore, 6 TQP = 6 TRP . Let PQ and RT intersect in Z. Then,
60◦ = 6 QTZ = 180◦ − 6 TQP − 6 QZT = 180◦ − 6 TRP − 6 RZP = 6 QPR, as desired.
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66. (a) Let ABCD be a square and let E be an arbitrary point on the side CD. Suppose that P is a point
on the diagonal AC for which EP ⊥ AC and that Q is a point on AE produced for which CQ ⊥ AE.
Prove that B,P,Q are collinear.

(b) Does the result hold if the hypothesis is weakened to require only that ABCD is a rectangle?

Solution 1. Let ABCD be a rectangle, and let E, P , Q be determined as in the problem. Suppose that
6 ACD = 6 BDC = α. Then 6 PEC = 90◦ − α. Because EPQC is concyclic, 6 PQC = 6 PEC = 90◦ − α.
Because ABCQD is concyclic, 6 BQC = 6 BDC = α. The points B, P , Q are collinear ⇐⇒ 6 BQC =
6 PQC ⇔ α = 90◦ − α⇔ α = 45◦ ⇔ ABCD is a square.

Solution 2. (a) EPQC, with a pair of supplementary opposite angles, is concyclic, so that 6 CQP =
6 CEP = 180◦ − 6 EPC − 6 ECP = 45◦. Since CBAQ is concyclic, 6 CQB = 6 CAB = 45◦. Thus,
6 CQP = 6 CQB so that Q, P , B are collinear.

(b) Suppose that ABCD is a nonquare rectangle. Then taking E = D yields a counterexample.

Solution 3. (a) The circle with diameter AC that passes through the vertices of the square also passes
through Q. Hence 6 QBC = 6 QAC. Consider triangles PBC and EAC. Since triangles ABC and EPC are
both isosceles right triangles, BC : AC = PC : EC. Also 6 BCA = 6 PCE = 45◦. Hence ∆PBC ∼ ∆EAC
(SAS) so that 6 PBC = 6 EAC = 6 QAC = 6 QBC. It follows that Q, P , B are collinear.

Solution 4. [S. Niu] Let ABCD be a rectangle and let E,P,Q be determined as in the problem. Let
EP be produced to meet BC in F . Since 6 ABF = 6 APF , the quadrilateral ABPF is concyclic, so that
6 PBC = 6 PBF = 6 PAF . Since ABCQ is concyclic, 6 QBC = 6 QAC = 6 PAE. Now B,P,Q are collinear

⇔ 6 PBC = 6 QBC ⇔ 6 PAF = 6 PAE ⇔ AC right bisects EF

⇔ 6 ECA = 6 ACB = 45◦ ⇔ ABCD is a square .

Solution 5. [M. Holmes] (a) Suppose that BQ intersects AC in R. Since ABCQD is concyclic, 6 AQR =
6 AQB = 6 ACB = 45◦, so that 6 BQC = 45◦. Since 6 EQR = 6 AQB = 6 ECR = 45◦, ERCQ is concyclic,
so that 6 ERC = 180◦ − 6 EQC = 90◦. Hence ER ⊥ AC, so that R = P and the result follows.

Solution 6. [L. Hong] (a) Let QC intersect AB in F . We apply Menelaus’ Theorem to triangle AFC:
B, P , Q are collinear if and only if

AB

BF
· FQ
QC
· CP
PA

= −1 .

Let the side length of the square be 1 and the length of DE be a. Then |AB| = 1. Since ∆ADE ∼ ∆FBC,
AD : DE = BF : BC, so that |BF | = 1/a and |FC| =

√
1 + a2/a. Since ∆ADE ∼ ∆CQE, CQ : EC =

AD : EA, so that |CQ| = (1− a)/
√

1 + a2. Hence

|FQ|
|CQ|

= 1 +
|FC|
|CQ|

= 1 +
1 + a2

a(1− a)
=

1 + a

a(1− a)
.

Since ∆ECP is right isosceles, |CP | = (1−a)/
√

2 and |PA| =
√

2−|CP | = (1+a)/
√

2. Hence |CP |/|PA| =
(1− a)/(1 + a). Multiplying the three ratios together and taking account of the directed segments gives the
product −1 and yields the result.

Solution 7. (a) Select coordinates so that A ∼ (0, 1), B ∼ (0, 0), C ∼ (1, 0), D ∼ (1, 1) and E ∼ (1, t)
for some t with 0 ≤ t ≤ 1. It is straightforward to verify that P ∼ (1− t

2 ,
t
2 ).

Since the slope of AE is t− 1, the slope of AQ should be (1− t)−1. Since the coordinates of Q have the
form (1 + s, s(1− t)−1) for some s, it is straightforward to verify that

Q ∼
(

2− t
1 + (1− t)2

,
t

1 + (1− t)2)

)
.
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It can now be checked that the slope of each of BQ and BP is t(2− t)−1, which yields the result.

(b) The result fails if A ∼ (0, 2), B ∼ (0, 0), C ∼ (1, 0), D ∼ (1, 2). If E ∼ (1, 1), then P ∼ ( 3
5 ,

4
5 ) and

Q ∼ ( 3
2 ,

1
2 ).
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