Solutions and comments

61. Let $S = 1!2!3! \cdots 99!100!$ (the product of the first 100 factorials). Prove that there exists an integer k for which $1 \le k \le 100$ and S/k! is a perfect square. Is k unique? (*Optional:* Is it possible to find such a number k that exceeds 100?)

Solution 1. Note that, for each positive integer j, $(2j-1)!(2j)! = [(2j-1)!]^2 \cdot 2j$. Hence

$$S = \prod_{j=1}^{50} [(2j-1)!]^2 [2j] = 2^{50} 50! \left[\prod_{j=1}^{50} (2j-1)! \right]^2,$$

from which we see that k = 50 is the required number.

We show that k = 50 is the only possibility. First, k cannot exceed 100, for otherwise 101! would be a factor of k! but not S, and so S/k! would not even be an integer. Let $k \leq 100$. The prime 47 does not divide k! for $k \leq 46$ and divides 50! to the first power. Since S/50! is a square, it evidently divides S to an odd power. So $k \geq 47$ in order to get a quotient divisible by 47 to an even power. The prime 53 divides each k! for $k \geq 53$ to the first power and divides S/50!, and so S to an even power. Hence, $k \leq 52$.

The prime 17 divides 50! and S/50!, and hence S to an even power, but it divides each of 51! and 52! to the third power. So we cannot have k = 51 or 52. Finally, look at the prime 2. Suppose that 2^{2u} is the highest power of 2 that divides S/50! and that 2^v is the highest power of 2 that divides 50!; then 2^{2u+v} is the highest power of 2 that divides S. The highest power of 2 that divides 48! and 49! is 2^{v-1} and the highest power of 2 that divides 46! and 47! is 2^{v-5} . From this, we deduce that 2 divides S/k! to an odd power when $47 \le k \le 49$. The desired uniqueness of k follows.

Solution 2. Let p be a prime exceeding 50. Then p divides each of m! to the first power for $p \le m \le 100$, so that p divides S to the even power 100 - (p - 1) = 101 - p. From this, it follows that if $53 \ge k$, p must divide S/k! to an odd power.

On the other hand, the prime 47 divides each m! with $47 \le m \le 93$ to the first power, and each m! with $94 \le m \le 100$ to the second power, so that it divides S to the power with exponent 54 + 7 = 61. Hence, in order that it divide S/k! to an even power, we must make k one of the numbers $47, \dots, 52$.

By an argument, similar to that used in Solution 1, it can be seen that 2 divides any product of the form $1!2!\cdots(2m-1)!$ to an even power and 100! to the power with exponent

$$\lfloor 100/2 \rfloor + \lfloor 100/4 \rfloor + \lfloor 100/8 \rfloor + \lfloor 100/16 \rfloor + \lfloor 100/32 \rfloor + \lfloor 100/64 \rfloor = 50 + 25 + 12 + 6 + 3 + 1 = 97$$

Hence, 2 divides S to an odd power. So we need to divide S by k! which 2 divides to an odd power to get a perfect square quotient. This reduces the possibilities for k to 50 or 51. Since

$$S = 2^{99} \cdot 3^{98} \cdot 4^{97} \cdots 99^2 \cdot 100 = (2 \cdot 4 \cdots 50)(2^{49} \cdot 3^{49} \cdot 4^{48} \cdots 99)^2 = 50! \cdot 2^{50} (\cdots)^2 ,$$

S/50! is a square, and so $S/51! = (S/50!) \div (51)$ is not a square. The result follows.

Solution 3. As above, S/(50!) is a square. Suppose that $53 \le k \le 100$. Then 53 divides k!/50! to the first power, and so k!/50! cannot be square. Hence $S/k! = (S/50!) \div (k!/50!)$ cannot be square. If k = 51 or 52, then k!/50! is not square, so S/k! cannot be square. Suppose that $k \le 46$. Then 47 divides 50!/k! to the first power, so that 50!/k! is not square and $S/k! = (S/50!) \times (50!/k!)$ cannot be square. If k = 47, 48 or 49, then 50!/k! is not square and so S/k! is not square. Hence S/k! is square if and only if k = 50 when $k \le 100$.

62. Let n be a positive integer. Show that, with three exceptions, n! + 1 has at least one prime divisor that exceeds n + 1.

Solution. Any prime divisor of n! + 1 must be larger than n, since all primes not exceeding n divide n!. Suppose, if possible, the result fails. Then, the only prime that can divide n! + 1 is n + 1, so that, for some positive integer r and nonnegative integer K,

$$n! + 1 = (n + 1)^r = 1 + rn + Kn^2$$
.

This happens, for example, when n = 1, 2, 4: $1! + 1 = 2, 2! + 1 = 3, 4! + 1 = 5^2$. Note, however, that the desired result does hold for n = 3: 3! + 1 = 7.

Henceforth, assume that n exceeds 4. If n is prime, then n + 1 is composite, so by our initial comment, all of its prime divisors exceed n + 1. If n is composite and square, then n! is divisible by the four distinct integers $1, n, \sqrt{n}, 2\sqrt{n}$, while is n is composite and nonsquare with a nontrivial divisor d. then n! is divisible by the four distinct integers 1, d, n/d, n. Thus, n! is divisible by n^2 . Suppose, if possible, the result fails, so that $n! + 1 = 1 + rn + Kn^2$, and $1 \equiv 1 + rn \pmod{n^2}$. Thus, r must be divisible by n, and, since it is positive, must exceed n. Hence

$$(n+1)^r \ge (n+1)^n > (n+1)n(n-1)\cdots 1 > n!+1$$
,

a contradiction. The desired result follows.

63. Let n be a positive integer and k a nonnegative integer. Prove that

$$n! = (n+k)^n - \binom{n}{1}(n+k-1)^n + \binom{n}{2}(n+k-2)^n - \dots \pm \binom{n}{n}k^n$$

Solution 1. Recall the Principle of Inclusion-Exclusion: Let S be a set of n objects, and let P_1, P_2, \dots, P_m be m properties such that, for each object $x \in S$ and each property P_i , either x has the property P_i or x does not have the property P_i . Let $f(i, j, \dots, k)$ denote the number of elements of S each of which has properties P_i, P_j, \dots, P_k (and possibly others as well). Then the number of elements of S each having none of the properties P_1, P_2, \dots, P_m is

$$n - \sum_{1 \le i \le m} f(i) + \sum_{1 \le i < j \le m} f(i,j) - \sum_{1 \le i < j < l \le m} f(i,j,l) + \dots + (-1)^m f(1,2,\dots,m)$$

We apply this to the problem at hand. Note that an ordered selection of n numbers selected from among $1, 2, \dots, n+k$ is a permutation of $\{1, 2, \dots, n\}$ if and only if it is constrained to contain each of the numbers $1, 2, \dots, n$. Let S be the set of all ordered selections, and we say that a selection has property P_i iff its fails to include at least i of the numbers $1, 2, \dots, n$ $(1 \le i \le n)$. The number of selections with property P_i is the product of $\binom{n}{i}$, the number of ways of choosing the i numbers not included and $(n + k - i)^n$, the number of ways of choosing the remaining n + k - 1 numbers. The result follows.

Solution 2. We begin with a lemma:

$$\sum_{i=0}^{n} (-1)^{i} {n \choose i} i^{m} = \begin{cases} 0 & (0 \le m \le n-1) \\ (-1)^{n} n! & (m=n) \end{cases}.$$

We use the convention that $0^0 = 1$. To prove this, note first that $i(i-1)\cdots(i-m) = i^{m+1}+b_m i^m+\cdots+b_1i+b_0$ for some integers b_i . We use an induction argument on m. The result holds for each positive n and for m = 0, as the sum is the expansion of $(1-1)^n$. It also holds for n = 1, 2 and all relevant m. Fix $n \ge 3$. Suppose that it holds when m is replaced by k for $0 \le k \le m \le n-2$. Then

$$\begin{split} \sum_{i=0}^{n} (-1)^{i} \binom{n}{i} i^{m+1} &= \sum_{i=1}^{n} (-1)^{i} \binom{n}{i} i(i-1) \cdots (i-m) - \sum_{k=0}^{m} b_{k} \sum_{i=0}^{n} (-1)^{i} \binom{n}{i} i^{k} \\ &= \sum_{i=m+1}^{n} (-1)^{i} \binom{n}{i} i(i-1) \cdots (i-m) - 0 \\ &= \sum_{i=m+1}^{n} (-1)^{i} \frac{n! i!}{i! (n-i)! (i-m-1)!} = \sum_{j=0}^{n-m-1} (-1)^{m+1+j} \frac{n!}{(n-m-1-j)! j!} \\ &= \sum_{j=0}^{n-m-1} (-1)^{m+1} (-1)^{j} \frac{n(n-1) \cdots (n-m) [(n-m-1)!]}{(n-m-1-j)! j!} \\ &= (-1)^{m+1} n(n-1) \cdots (n-m) \sum_{j=0}^{n-m-1} (-1)^{j} \binom{n-m-1}{j} = 0 \;. \end{split}$$

(Note that the j = 0 term is 1, which is consistent with the $0^0 = 1$ convention mentioned earlier.) So $\sum_{i=0}^{n} (-1)^i {n \choose i} i^m = 0$ for $0 \le m \le n - 1$. Now consider the case m = n:

$$\sum_{i=1}^{n} (-1)^{i} \binom{n}{i} i^{n} = \sum_{i=1}^{n} (-1)^{i} \binom{n}{i} i(i-1) \cdots (i-n+1) - \sum_{k=0}^{n-1} b_{k} \sum_{i=0}^{n} (-1)^{i} \binom{n}{i} i^{k}$$

Every term in the first sum vanishes except the *n*th and each term of the second sum vanishes. Hence $\sum_{i=1}^{n} (-1)^{i} {n \choose i} i^{n} = (-1)^{n} n!.$

Returning to the problem at hand, we see that the right side of the desired equation is equal to

$$\begin{split} (n+k)^n &- \binom{n}{1} (n+k-1)^n + \binom{n}{2} (n+k-2)^n - \dots + (-1)^n \binom{n}{n} (n+k-n)^n \\ &= \sum_{i=0}^n (-1)^i \binom{n}{i} (n-i+k)^n = \sum_{i=0}^n (-1)^i \binom{n}{i} \sum_{j=0}^n \binom{n}{j} (n-i)^j k^{n-j} \\ &= \sum_{i=0}^n \sum_{j=0}^n (-1)^i \binom{n}{i} \binom{n}{j} (n-i)^j k^{n-j} = \sum_{j=0}^n \binom{n}{j} k^{n-j} \sum_{i=0}^n (-1)^i \binom{n}{n-i} (n-i)^j \\ &= \sum_{j=0}^n \binom{n}{j} k^{n-j} \sum_{i=0}^n (-1)^i \binom{n}{n-i} (n-i)^j \\ &= \sum_{j=0}^n \binom{n}{j} k^{n-j} \sum_{i=0}^n (-1)^n (-1)^i \binom{n}{i} i^j . \end{split}$$

When $0 \le j \le n-1$, the sum $\sum_{i=0}^{n} (-1)^{i} {n \choose n-i} (n-i)^{j} = \sum_{i=0}^{n} (-1)^{n-i} {n \choose i} i^{j}$ vanishes, while, when j = n, it assumes the value n!. Thus, the right side of the given equation is equal to ${n \choose n} k^0 n! = n!$ as desired.

Solution 3. Let m = n + k, so that $m \ge n$, and let the right side of the equation be denoted by R. Then

$$\begin{split} R &= m^n - \binom{n}{1} (m-1)^n + \binom{n}{2} (m-2)^n - \dots + (-1)^i \binom{n}{i} (m-i)^n + \dots + (-1)^n \binom{n}{n} (m-n)^n \\ &= m^m \bigg[\sum_{j=0}^n (-1)^i \binom{n}{i} \bigg] - \binom{n}{1} m^{n-1} \bigg[\sum_{i=1}^n (-1)^i i\binom{n}{i} \bigg] + \binom{n}{2} m^{n-2} \bigg[\sum_{i=1}^n (-1)^i i^2 \binom{n}{i} \bigg] + \dots \\ &+ (-1)^n \binom{n}{n} \bigg[\sum_{i=1}^n (-1)^i i^n \binom{n}{i} \bigg] \,. \end{split}$$

Let

$$f_0(x) = (1-x)^n = \sum_{i=0}^n (-1)^i \binom{n}{i} x^i$$

and let

$$f_k(x) = xDf_{k-1}(x)$$

for $k \ge 1$, where Df denotes the derivative of a function f. Observe that, from the closed expression for $f_0(x)$, we can establish by induction that

$$f_k(x) = \sum_{i=0}^n (-1)^i i^k \binom{n}{i} x^i$$

so that $R = \sum_{k=0}^{n} (-1)^k {n \choose k} m^{n-k} f_k(1).$

By induction, we establish that

$$f_k(x) = (-1)^k n(n-1) \cdots (n-k+1) x^k (1-x)^{n-k} + (1-x)^{n-k+1} g_k(x)$$

for some polynomial $g_k(x)$. This is true for k = 1 with $g_1(x) = 0$. Suppose if holds for k = j. Then

$$\begin{aligned} f'_j(x) &= (-1)^j n(n-1) \cdots (n-j+1) x^{j-1} (1-x)^{n-j} - (-1)^j n(n-1) \cdots (n-j+1)(n-j) x^j (1-x)^{n-j-1} \\ &- (n-j+1)(1-x)^{n-j} g_j(x) + (1-x)^{n-j+1} g'_j(x) \;, \end{aligned}$$

whence

$$f_{j+1}(x) = (-1)^{j+1} n(n_1) \cdots (n-j) x^j (1-x)^{n-(j+1)} + (1-x)^{n-(j+1)+1} [(-1)^j n(n-1) \cdots (n-j+1) x^j - (n-j+1) x g_k(x) + x(1-x) g'_j(x)]$$

and we obtain the desired representation by induction. Then for $1 \le k \le n-1$, $f_k(1) = 0$ while $f_n(1) = (-1)^n n!$. Hence $R = (-1)^n f_n(1) = n!$.

64. Let M be a point in the interior of triangle ABC, and suppose that D, E, F are respective points on the side BC, CA, AB, which all pass through M. (In technical terms, they are *cevians*.) Suppose that the areas and the perimeters of the triangles BMD, CME, AMF are equal. Prove that triangle ABC must be equilateral.

Solution. [L. Lessard] Let the common area of the triangles BMD, CME and AMF be a and let their common perimeter be p. Let the area and perimeter of ΔAME be u and x respectively, of ΔMFB be v and y respectively, and of ΔCMD be w and z respectively.

By considering pairs of triangles with equal heights, we find that

$$\begin{split} \frac{AF}{FB} &= \frac{a}{v} = \frac{2a+u}{v+a+w} = \frac{a+u}{a+w} \ ,\\ \frac{BD}{DC} &= \frac{a}{w} = \frac{2a+v}{u+a+w} = \frac{a+v}{a+u} \ ,\\ \frac{CE}{EA} &= \frac{a}{u} = \frac{2a+w}{u+a+v} = \frac{a+w}{a+v} \ . \end{split}$$

¿From these three sets of equations, we deduce that

$$\frac{a^3}{uvw} = 1 ;$$

$$a^{2} + (w - u)a - uv = 0$$
,
 $a^{2} + (u - w)a - vw = 0$,
 $a^{2} + (v - u)a - uw = 0$;

whence

$$a^3 = uvw$$
 and $3a^2 = uv + vw + uw$.

This means that uv, vw, uw are three positive numbers whose geometric and arithmetic means are both equal to a^2 . Hence $a^2 = uv = vw = uw$, so that u = v = w = a. It follows that AF = FB, BD = DC, CE = EA, so that AD, BE and CF are medians and M is the centroid.

Wolog, suppose that $AB \ge BC \ge CA$. Since $AB \ge BC$, $\angle AEB \ge 90^{\circ}$, and so $AM \ge MC$. Thus $x \ge p$. Similarly, $y \ge p$ and $p \ge z$.

Consider triangles BMD and AME. We have $BD \ge AE$, $BM \ge AM$, $ME = \frac{1}{2}BM$ and $MD = \frac{1}{2}AM$. Therefore

$$p - x = (BD + MD + BM) - (AE + ME + AM) = (BD - AE) + \frac{1}{2}(BM - AM) \ge 0$$

and so $p \ge x$. Since also $x \ge p$, we have that p = x. But this implies that AM = MC, so that $ME \perp AC$ and AB = BC. Since BE is now an axis of a reflection which interchanges A and C, as well as F and D, it follows that p = z and p = y as well. Thus, AB = AC and AC = BC. Thus, the triangle is equilateral.

65. Suppose that XTY is a straight line and that TU and TV are two rays emanating from T for which $\angle XTU = \angle UTV = \angle VTY = 60^{\circ}$. Suppose that P, Q and R are respective points on the rays TY, TU and TV for which PQ = PR. Prove that $\angle QPR = 60^{\circ}$.

Solution 1. Let R be a rotation of 60° about T that takes the ray TU to TV. Then, if R transforms $Q \to Q'$ and $P \to P'$, then Q' lies on TV and the line Q'P' makes an angle of 60° with QP. Because of the rotation, $\angle P'TP = 60^\circ$ and TP' = TP, whence TP'P is an equilateral triangle.

Since $\angle Q'TP = \angle TPP' = 60^\circ$, TV ||P'P. Let T be the translation that takes P' to P. It takes Q' to a point Q'' on the ray TV, and PQ'' = P'Q' = PQ. Hence Q'' can be none other than the point R [why?], and the result follows.

Solution 2. The reflection in the line XY takes $P \to P$, $Q \to Q'$ and $R \to R'$. Triangles PQR' and PQ'R are congruent and isosceles, so that $\angle TQP = \angle TQ'P = \angle TRP$ (since PQ' = PR). Hence TQRP is a concyclic quadrilateral, whence $\angle QPR = \angle QTR = 60^{\circ}$.

Solution 3. [S. Niu] Let S be a point on TU for which SR||XY; observe that ΔRST is equilateral. We first show that Q lies between S and T. For, if S were between Q and T, then $\angle PSQ$ would be obtuse and PQ > PS > PR (since $\angle PRS > 60^{\circ} > \angle PSR$ in ΔPRS), a contradiction.

The rotation of 60° with centre R that takes S onto T takes ray RQ onto a ray through R that intersects TY in M. Consider triangles RSQ and RTM. Since $\angle RST = \angle RTM = 60^\circ$, $\angle SRQ = 60^\circ - \angle QRT = \angle TRM$ and SR = TR, we have that $\Delta RSQ \equiv \Delta RTM$ and RQ = RM. (ASA) Since $\angle QRM = 60^\circ$, ΔRQM is equilateral and RM = RQ. Hence M and P are both equidistant from Q and R, and so at the intersection of TY and the right bisector of QR. Thus, M = P and the result follows.

Solution 4. [H. Pan] Let Q' and R' be the respective reflections of Q and R with respect to the axis XY. Since $\angle RTR' = 120^{\circ}$ and TR = TR', $\angle QR'R = \angle TR'R = 30^{\circ}$. Since Q, R, Q', R', lie on a circle with centre P, $\angle QPR = 2\angle QR'R = 60^{\circ}$, as desired.

Solution 5. [R. Barrington Leigh] Let W be a point on TV such that $\angle WPQ = 60^\circ = \angle WTU$. [Why does such a point W exist?] Then WQTP is a concyclic quadrilateral so that $\angle QWP = 180^\circ - \angle QTP = 60^\circ$ and $\triangle PWQ$ is equilateral. Hence PW = PQ = PR.

Suppose $W \neq R$. If R is farther away from T than W, then $\angle RPT > \angle WPT > \angle WPQ = 60^{\circ} \Rightarrow 60^{\circ} > \angle TRP = \angle RWP > 60^{\circ}$, a contradiction. If W is farther away from T than R, then $\angle WPT > \angle WPQ = 60^{\circ} \Rightarrow 60^{\circ} > \angle RWP = \angle WRP > 60^{\circ}$, again a contradiction. So R = W and the result follows.

Solution 6. [M. Holmes] Let the circle through T, P, Q intersect TV in N. Then $\angle QNP = 180^{\circ} - \angle QTP = 60^{\circ}$. Since $\angle PQN = \angle PTN = 60^{\circ}$, $\triangle PQN$ is equilateral so that PN = PQ. Suppose, if possible, that $R \neq N$. Then N and R are two points on TV equidistant from P. Since $\angle PNT < \angle PNQ = 60^{\circ}$ and $\triangle PNR$ is isosceles, we have that $\angle PNR < 90^{\circ}$, so N cannot lie between T and R, and $\angle PRN = \angle PNR = \angle PNT < 60^{\circ}$. Since $\angle PTN = 60^{\circ}$, we conclude that T must lie between R and N, which transgresses the condition of the problem. Hence R and N must coincide and the result follows.

Solution 7. [P. Cheng] Determine S on TU and Z on TY for which SR ||XY| and $\angle QRZ = 60^{\circ}$. Observe that $\angle TSR = \angle SRT = 60^{\circ}$ and SR = RT.

Consider triangles SRQ and TRZ. $\angle SRQ = \angle SRT - \angle QRT = \angle QRZ - \angle QRT = \angle TRZ$; $\angle QSR = 60^{\circ} = \angle ZTR$, so that $\triangle SRQ = \triangle TRZ$ (ASA).

Hence $RZ = RQ \Rightarrow \Delta RQZ$ is equilateral $\Rightarrow RZ = ZQ$ and $\angle RZQ = 60^{\circ}$. Now, both P and Z lie on the intersection of TY and the right bisector of QR, so they must coincide: P = Z. The result follows.

Solution 8. Let the perpendicular, produced, from Q to XY meet VT, produced, in S. Then $\angle XTS = \angle VTY = 60^\circ = \angle XTU$, from which is can be deduced that TX right bisects QS. Hence PS = PQ = PR, so that Q, R, S are all on the same circle with centre P.

Since $\angle QTS = 120^\circ$, we have that $\angle SQT = \angle QSR = 30^\circ$, so that QR must subtend an angle of 60° at the centre P of the circle. The desired result follows.

Solution 9. [A.Siu] Let the right bisector of QR meet the circumcircle of TQR on the same side of QR at T in S. Since $\angle QSR = \angle QTR = 60^{\circ}$ and QS = QR, $\angle SQR = \angle SRQ = 60^{\circ}$. Hence $\angle STQ = 180^{\circ} - \angle SRQ = 120^{\circ}$. But $\angle YTQ = 120^{\circ}$, so S must lie on TY. It follows that S = P.

Solution 10. Assign coordinates with the origin at T and the x-axis along XY. The the respective coordinates of Q and R have the form $(u, -\sqrt{3}u)$ and $(v, \sqrt{3}v)$ for some real u and v. Let the coordinates of P be (w, 0). Then PQ = PR yields that w = 2(u + v). [Exercise: work it out.]

$$|PQ|^{2} - |QR|^{2} = (u - w)^{2} + 3u^{2} - (u - v)^{2} - 3(u + v)^{2}$$

= $w^{2} - 2uw - 4v(u + v) = w^{2} - 2uw - 2vw$
= $w^{2} - 2(u + v)w = 0$.

Hence PQ = QR = PR and ΔPQR is equilateral. Therefore $\angle QPR = 60^{\circ}$.

Solution 11. [J.Y. Jin] Let C be the circumcircle of ΔPQR . If T lies strictly inside C, then $60^{\circ} = \angle QTR > \angle QPR$ and $60^{\circ} = \angle PTR > \angle PQR = \angle PRQ$. Thus, all three angle of ΔPQR would be less than 60°, which is not possible. Similarly, if T lies strictly outside C, then $60^{\circ} = \angle QTR < \angle QPR$ and $60^{\circ} = \angle PTR < \angle PQR = \angle PRQ$, so that all three angles of ΔPQR would exceed 60° , again not possible. Thus T must be on C, whence $\angle QPR = \angle QTR = 60^{\circ}$.

Solution 12. [C. Lau] By the Sine Law,

$$\frac{\sin \angle TQP}{|TP|} = \frac{\sin 120^{\circ}}{|PQ|} = \frac{\sin 60^{\circ}}{|PR|} = \frac{\sin \angle TRP}{|TP|}$$

whence $\sin \angle TQP = \sin \angle TRP$. Since $\angle QTP$, in triangle QTP is obtuse, $\angle TQP$ is acute.

Suppose, if possible, that $\angle TRP$ is obtuse. Then, in triangle TPR, TP would be the longest side, so PR < TP. But in triangle TQP, PQ is the longest side, so PQ > TP, and so $PQ \neq PR$, contrary to hypothesis. Hence $\angle TRP$ is acute. Therefore, $\angle TQP = \angle TRP$. Let PQ and RT intersect in Z. Then, $60^\circ = \angle QTZ = 180^\circ - \angle TQP - \angle QZT = 180^\circ - \angle TRP - \angle RZP = \angle QPR$, as desired.

- 66. (a) Let ABCD be a square and let E be an arbitrary point on the side CD. Suppose that P is a point on the diagonal AC for which $EP \perp AC$ and that Q is a point on AE produced for which $CQ \perp AE$. Prove that B, P, Q are collinear.
 - (b) Does the result hold if the hypothesis is weakened to require only that *ABCD* is a rectangle?

Solution 1. Let ABCD be a rectangle, and let E, P, Q be determined as in the problem. Suppose that $\angle ACD = \angle BDC = \alpha$. Then $\angle PEC = 90^{\circ} - \alpha$. Because EPQC is concyclic, $\angle PQC = \angle PEC = 90^{\circ} - \alpha$. Because ABCQD is concyclic, $\angle BQC = \angle BDC = \alpha$. The points B, P, Q are collinear $\iff \angle BQC = \angle PQC \Leftrightarrow \alpha = 90^{\circ} - \alpha \Leftrightarrow \alpha = 45^{\circ} \Leftrightarrow ABCD$ is a square.

Solution 2. (a) EPQC, with a pair of supplementary opposite angles, is concyclic, so that $\angle CQP = \angle CEP = 180^{\circ} - \angle EPC - \angle ECP = 45^{\circ}$. Since CBAQ is concyclic, $\angle CQB = \angle CAB = 45^{\circ}$. Thus, $\angle CQP = \angle CQB$ so that Q, P, B are collinear.

(b) Suppose that ABCD is a nonquare rectangle. Then taking E = D yields a counterexample.

Solution 3. (a) The circle with diameter AC that passes through the vertices of the square also passes through Q. Hence $\angle QBC = \angle QAC$. Consider triangles PBC and EAC. Since triangles ABC and EPC are both isosceles right triangles, BC : AC = PC : EC. Also $\angle BCA = \angle PCE = 45^{\circ}$. Hence $\triangle PBC \sim \triangle EAC$ (SAS) so that $\angle PBC = \angle EAC = \angle QAC = \angle QBC$. It follows that Q, P, B are collinear.

Solution 4. [S. Niu] Let ABCD be a rectangle and let E, P, Q be determined as in the problem. Let EP be produced to meet BC in F. Since $\angle ABF = \angle APF$, the quadrilateral ABPF is concyclic, so that $\angle PBC = \angle PBF = \angle PAF$. Since ABCQ is concyclic, $\angle QBC = \angle QAC = \angle PAE$. Now B, P, Q are collinear

$$\Leftrightarrow \angle PBC = \angle QBC \Leftrightarrow \angle PAF = \angle PAE \Leftrightarrow AC \text{ right bisects } EF$$

$$\Leftrightarrow \angle ECA = \angle ACB = 45^{\circ} \Leftrightarrow ABCD$$
 is a square.

Solution 5. [M. Holmes] (a) Suppose that BQ intersects AC in R. Since ABCQD is concyclic, $\angle AQR = \angle AQB = \angle ACB = 45^{\circ}$, so that $\angle BQC = 45^{\circ}$. Since $\angle EQR = \angle AQB = \angle ECR = 45^{\circ}$, ERCQ is concyclic, so that $\angle ERC = 180^{\circ} - \angle EQC = 90^{\circ}$. Hence $ER \perp AC$, so that R = P and the result follows.

Solution 6. [L. Hong] (a) Let QC intersect AB in F. We apply Menelaus' Theorem to triangle AFC: B, P, Q are collinear if and only if

$$\frac{AB}{BF} \cdot \frac{FQ}{QC} \cdot \frac{CP}{PA} = -1 \; .$$

Let the side length of the square be 1 and the length of DE be a. Then |AB| = 1. Since $\Delta ADE \sim \Delta FBC$, AD: DE = BF: BC, so that |BF| = 1/a and $|FC| = \sqrt{1 + a^2}/a$. Since $\Delta ADE \sim \Delta CQE$, CQ: EC = AD: EA, so that $|CQ| = (1 - a)/\sqrt{1 + a^2}$. Hence

$$\frac{|FQ|}{|CQ|} = 1 + \frac{|FC|}{|CQ|} = 1 + \frac{1+a^2}{a(1-a)} = \frac{1+a}{a(1-a)}$$

Since ΔECP is right isosceles, $|CP| = (1-a)/\sqrt{2}$ and $|PA| = \sqrt{2} - |CP| = (1+a)/\sqrt{2}$. Hence |CP|/|PA| = (1-a)/(1+a). Multiplying the three ratios together and taking account of the directed segments gives the product -1 and yields the result.

Solution 7. (a) Select coordinates so that $A \sim (0,1)$, $B \sim (0,0)$, $C \sim (1,0)$, $D \sim (1,1)$ and $E \sim (1,t)$ for some t with $0 \le t \le 1$. It is straightforward to verify that $P \sim (1 - \frac{t}{2}, \frac{t}{2})$.

Since the slope of AE is t-1, the slope of AQ should be $(1-t)^{-1}$. Since the coordinates of Q have the form $(1+s, s(1-t)^{-1})$ for some s, it is straightforward to verify that

$$Q \sim \left(\frac{2-t}{1+(1-t)^2}, \frac{t}{1+(1-t)^2)}\right) \, .$$

It can now be checked that the slope of each of BQ and BP is $t(2-t)^{-1}$, which yields the result.

(b) The result fails if $A \sim (0,2), B \sim (0,0), C \sim (1,0), D \sim (1,2)$. If $E \sim (1,1)$, then $P \sim (\frac{3}{5}, \frac{4}{5})$ and $Q \sim (\frac{3}{2}, \frac{1}{2})$.