
Solutions

Note. The incentre of a triangle is the centre of the inscribed circle that touches all three sides. A set
is connected if, given two points in the set, it is possible to trace a continuous path from one to the other
without leaving the set. [X · · ·Z] refers to the area of the plane figure X · · ·Z.

121. Let n be an integer exceeding 1. Let a1, a2, · · · , an be posive real numbers and b1, b2, · · · , bn be arbitrary
real numbers for which ∑

i 6=j

aibj = 0 .

Prove that
∑
i 6=j bibj < 0 .

Solution 1. For the result to hold, we need to assume that at least one of the bi is nonzero. The condition
is that

(a1 + a2 + · · ·+ an)(b1 + b2 + · · ·+ bn) = a1b1 + a2b2 + · · ·+ anbn .

Now
2
∑
i 6=j

bibj = (b1 + b2 + · · ·+ bn)2 − (b21 + b22 + · · ·+ b2n)

=
(a1b1 + · · ·+ anbn)2

(a1 + · · ·+ an)2
− (b21 + · · ·+ b2n)

≤ (a2
1 + · · ·+ a2

n)(b21 + · · ·+ b2n)
(a1 + · · ·+ an)2

− (b21 + · · ·+ b2n)

=
(b21 + · · ·+ b2n)

(a1 + · · ·+ an)2
[(a2

1 + · · ·+ a2
n)− (a1 + · · ·+ an)2] < 0 ,

from which the desired result follows. The inequality is due to the Cauchy-Schwarz Inequality.

Solution 2. [R. Barrington Leigh] Suppose that not all the bi vanish and that b1 ≥ b2 ≥ · · · ≥ bn (wolog).
Since

∑
i 6=j aibj = 0, not all the bi have the same sign, and so b1 > 0 > bn. Wolog, we may assume that

B ≡ b1 +b2 + · · ·+bn ≥ 0. (If B < 0, we can change the signs of all the bi which alters neither the hypothesis
nor the conclusion.) We have that

0 = a1(b1 −B) + a2(b2 −B) + · · ·+ an(bn −B) < (a1 + a2 + · · ·+ an)(b1 −B) ,

so that b1 > B. Hence
2
∑
i 6=j

bibj = B2 −
∑

b2i < B2 − b21 < 0 ,

as desired.

122. Determine all functions f from the real numbers to the real numbers that satisfy

f(f(x) + y) = f(x2 − y) + 4f(x)y

for any real numbers x, y.

Solution 1. Let y = 1
2 (x2 − f(x)). Then

f

(
f(x) + x2

2

)
= f

(
f(x) + x2

2

)
+ 2f(x)[x2 − f(x)] ,

from which it follows that, for each x, either f(x) = 0 or f(x) = x2. [Note: this does not imply yet that the
same option holds for all x.] In particular, f(0) = 0, so that f(y) = f(−y) for all y.
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Suppose that f(c) = 0. Then, for each real y, f(y) = f(c2 − y), whence f(c2) = f(0) = 0. Thus, for
each real y, f(y) = f(c4 − y). Suppose that f(y) 6= 0. Then

f(y) = y2 =⇒ y2 = (c2 − y)2 = (c4 − y)2 =⇒ 0 = c2(c2 − 2y) = c4(c4 − 2y) .

If c were nonzero, then we would have c2/2 = y = c4/2, so c = 1 and y = 1
2 . But then f(−y) = f(y) =

f(1 − y); substituting y = − 1
2 yields 1

4 = f( 1
2 ) = f( 3

2 ), which is false. Hence c = 0. It follows that, either
f(x) ≡ 0 (for all x) or else that f(x) ≡ x2 (for all x). These solutions can (and should be) checked.

Solution 2. Let y = x2 − f(x). Then

f(x2) = f(f(x) + x2 − f(x)) = f(f(x)) + 4f(x)[x2 − f(x)] .

Taking y = 0, we see that f(f(x)) = f(x2), so that 4f(x)[x2 − f(x)] = 0. Hence, for each x, either f(x) = 0
or f(x) = x2.

Suppose, if possible, that there are two nonzero reals u and v for which f(u) = 0 and f(v) = v2. Setting
(x, y) = (u, v) yields that v2 = f(u2 − v). Since v 6= 0, we must have that

v2 = f(u2 − v) = u4 − 2u2v + v2 ⇒ 0 = u2(u2 − 2v)⇒ v =
1
2
u2 .

This would mean that we could find only one such pair (u, v), which is false. Hence this case is not possible,
so that, either f(x) = 0 for all x or else that f(x) = x2 for all x.

Solution 3. From (x, y) = (0, 0), we have that f(f(0)) = f(0). From (x, y) = (0,−f(0)), we have that
f(0) = f(f(0))− 4f(0)2, whence f(0) = 0. From x = 0, we have that f(y) = f(−y) for all y. Finally, taking
y = x2 and y = −f(x), we get

f(x2 + f(x)) = f(0) + 4f(x)x2 = f(x2 + f(x))− 4f(x)2 + 4f(x)x2 .

so that 0 = 4f(x)[x2 − f(x)]. We can finish as in the other solutions.

Solution 4. [R. Barrington Leigh] Taking y = x− f(x) and then y = x2 − x yields that

f(x) = f(f(x) + x− f(x)) = f(x2 − x+ f(x)) + 4f(x)(x− f(x))

= f(x2 − (x2 − x)) + 4f(x)(x2 − x) + 4f(x)(x− f(x))

= f(x)[1 + 4x2 − 4x+ 4x− 4f(x)] = f(x) + 4f(x)[x2 − f(x)] ,

so that for each x, either f(x) = 0 or f(x) = x2. The solution can be completed as before.

123. Let a and b be the lengths of two opposite edges of a tetrahedron which are mutually perpendicular and
distant d apart. Determine the volume of the tetrahedron.

Solution 1. Construct parallel planes distant d apart that contain the edges of lengths a and b. In the
planes, congruent parallelograms can be constructed whose diagonals are of lengths a and b and right bisect
each other, and each of which has an edge of the tetrahedron as a diagonal. Each parallelogram can be
obtained from the other by a translation relating their centres, so the two parallelograms bound a prism
with opposite faces distant d apart. The volume of this prism is 1

2abd.

The prism is the disjoint union of the given tetrahedron and four tetrahedra, all of height d, two having
as base a triangle with base a and height 1

2b and two having as base a triangle with base b and height
1
2a. Each of these latter four tetrahedra have volume 1

3 ( 1
2 ·

ab
2 )d = abd

12 . Hence, the volume of the given
tetrahedron is

abd

2
− 4
(
abd

12

)
=

1
6

(abd) .

2



Solution 2. Suppose that ABCD is the tetrahedron with opposite edges AB of length a and CD of
length b orthogonal and at distance d from each other.

Case (i). Suppose that AB and CD are oriented so that there are points E and F on AB and CD
respectively for which EF is perpendicular to both AB and CD. Then |EF | = d and [ABF ] = 1

2ad. The
tetrahedron ABCD is the union of the nonoverlapping tetrahedra ABFC and ABFD, each with ∆ABF as
“base” and perpendicular height along CD. Hence the volume of ABCD is equal to

1
3

[ABF ](|FC|+ |FD|) =
1
3

(
1
2
ad

)
|CD| = 1

6
abd .

Case (ii). Suppose that E and F are on AB possibly produced and on CD produced, say, with EF
perpendicular to AB and CD. Then we can argue in a way similar to that in Case (i) that the volume of
ABCD is equal to the volume of ABFC less the volume of ABFD to obtain the answer (1/6)abd.

Solution 3. [C. Lau; H. Lee] Let ABCD be the given tetrahedron with |BC| = a and |AD| = b.
Suppose E lies on BC, possibly produced, with AE ⊥ BC. Then AD must lie in the plane containing AE
and perpendicular to BC. Let F lie on AD produced with EF ⊥ AD. Note that |EF | = d. Let G be the
foot of the perpendicular from D to AE produced. Then

[ADE] =
1
2
|AD||EF | = 1

2
bd =

1
2
|AE||GD| .

It follows that the volume of ABCD is equal to

1
3

[ABC]|GD| = 1
6
|AE||BC||GD| = 1

6
abd .

124. Prove that
(14 + 1

4 )(34 + 1
4 )(54 + 1

4 ) · · · (114 + 1
4 )

(24 + 1
4 )(44 + 1

4 )(64 + 1
4 ) · · · (124 + 1

4 )
=

1
313

.

Solution. The left side can be written as∏
{4x4 + 1 : x odd, 1 ≤ x ≤ 11} ÷

∏
{4x4 + 1 : x even, 2 ≤ x ≤ 12} .

Now
4x4 + 1 = 4x4 + 4x2 + 1− 4x2 = (2x2 + 1)2 − (2x)2

= (2x2 − 2x+ 1)(2x2 + 2x+ 1) = [(x− 1)2 + x2][x2 + (x+ 1)2] .

¿From this, we see that the left side is equal to

[12(12 + 22)][(22 + 32)(32 + 42)] · · · [(102 + 112)(112 + 122)]
[(12 + 22)(22 + 32)][(32 + 42)(42 + 52)] · · · [(112 + 122)(122 + 132)]

=
12

122 + 132
=

1
313

.

Comment. In searching for factors, note that any common divisor of 4n4 + 1 and 4(n + 1)4 + 1 must
divide the difference

[(n4 + 1)4 − n4] = [(n+ 1)2 − n2][(n+ 1)2 + n2] = (2n+ 1)(2n2 + 2n+ 1) ,

so that we can try either 2n+ 1 (which does not work) or 2n2 + 2n+ 1 to find that 4n4 + 1 = (2n2 + 2n+
1)(2n2 − 2n+ 1) and

4(n+ 1)4 + 1 = (2n2 + 2n+ 1)(2n2 + 6n+ 5) = (2n2 + 2n+ 1)[2(n+ 2)2 − 2(n+ 2) + 1] .

3



125. Determine the set of complex numbers z which satisfy

Im (z4) = (Re (z2))2 ,

and sketch this set in the complex plane. (Note: Im and Re refer respectively to the imaginary and real
parts.)

Solution 1. Let z = x + yi and z2 = u + vi. Then u = x2 − y2, v = 2xy and z4 = (u2 − v2) + 2uvi.
Im (z4) = (Re (z2))2 implies that 2uv = u2. Thus, u = 0 or u = 2v. These reduce to x2 = y2 or
(x − 2y)2 = 5y2, so that the locus consists of the points z on the lines determined by the equations y = x,
y = −x, y = (

√
5− 2)x, y = (−

√
5− 2)x.

Solution 2. Let z = r(cos θ + i sin θ); then z2 = r2(cos 2θ + i sin 2θ) and z4 = r4(cos 4θ + i sin 4θ). The
condition is equivalent to

r4 sin 4θ = (r2 cos 2θ)2 ⇔ 2 sin 2θ cos 2θ = cos2 2θ .

Hence cos 2θ = 0 or tan 2θ = 1
2 . The latter possibility leads to tan2 θ + 4 tan θ − 1 = 0 or tan θ = −2±

√
5.

This yields the same result as in Solution 1.

Solution 3. Let z = x+ yi. Then z2 = x2− y2 + 2xyi and z4 = (x4− 6x2y2 + y4) + 4xy(x2− y2)i. Then
the condition in the problem is equivalent to

4xy(x2 − y2) = (x2 − y2)2 ,

which in turn is equivalent to y = ±x or y2 + 4xy − x2 = 0, i.e., y = (−2±
√

5)x.

126. Let n be a positive integer exceeding 1, and let n circles (i.e., circumferences) of radius 1 be given in the
plane such that no two of them are tangent and the subset of the plane formed by the union of them is
connected. Prove that the number of points that belong to at least two of these circles is at least n.

Solution. Let Γ be the set of circles and S be the set of points belonging to at least two of them. For
C ∈ Γ and s ∈ S ∩C, define f(s, C) = 1/k, where k is the number of circles passing through s, including C.
For C ∈ Γ and s 6∈ C, define f(s, C) = 0. Observe that, for each s ∈ S,∑

C∈Γ

f(s, C) = 1 .

Let C ∈ Γ; select s ∈ S ∩C for which f(s, C) = 1/k is minimum. Let C = C1, C2, · · · , Ck be the circles that
contain s. These circles (apart from C) meet C in distinct points, so that

∑
s∈S

f(s, C) ≥ 1
k

+
k − 1
k

= 1 .

Hence the number of points in S is equal to∑
s∈S

∑
C∈Γ

f(s, C) =
∑
C∈Γ

∑
s∈S

f(s, C) ≥ n .

Comment. The full force of the connectedness condition is not needed. It is required only that each
circle intersect with at least one other circle.
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