
Solutions and comments.

Notes. A rectangular hyperbola is an hyperbola whose asymmptotes are at right angles.

97. A triangle has its three vertices on a rectangular hyperbola. Prove that its orthocentre also lies on the
hyperbola.

Solution 1. A rectangular hyperbola can be represented as the locus of the equation xy = 1. Let the
three vertices of the triangle be at (a, 1/a), (b, 1/b), (c, 1/c). The altitude to the points (c, 1/c) has slope
−(a− b)/(a−1 − b−1) = ab and its equation is y = abx+ (1/c)− abc. The altitude to the point (a, 1/a) has
equation y = bcx+ (1/a)− abc. These two lines intersect in the point (−1/abc,−abc) and the result follows.

Solution 2. [R. Barrington Leigh] Suppose that the equation of the rectangular hyperbola is xy = 1.
Let the three vertices be at (xi, yi) (i = 1, 2, 3), and let the orthocentre be at (x0, y0). Then

(x1 − x2)(x0 − x3) = −(y1 − y2)(y0 − y3)

and
(x1 − x3)(x0 − x2) = −(y1 − y3)(y0 − y2) .

Cross-multiplying these equations yields that

(x1 − x2)(y1 − y3)(x0 − x3)(y0 − y2) = (x1 − x3)(y1 − y2)(x0 − x2)(y0 − y3) ,

whence

(1− x1y3− x2y1 + x2y3)(x0y0− x0y2− x3y0 + x3y2) = (1− x1y2− x3y1 + x3y2)(x0y0− x0y3− x2y0 + x2y3) .

Collecting up the terms in x0y0, x0, y0, and the rest, and simplifying, yields that x0y0 = 1, as desired.

98. Let a1, a2, · · · , an+1, b1, b2, · · · , bn be nonnegative real numbers for which
(i) a1 ≥ a2 ≥ · · · ≥ an+1 = 0,
(ii) 0 ≤ bk ≤ 1 for k = 1, 2, · · · , n.
Suppose that m = bb1 + b2 + · · ·+ bnc+ 1. Prove that

n∑
k=1

akbk ≤
m∑
k=1

ak .

Solution. Note that m− 1 ≤ b1 + b2 + · · ·+ bm < m. We have that

a1b1 + a2b2 + · · ·+ ambm + am+1bm+1 + · · ·+ anbn

≤ a1b1 + a2b2 + · · ·+ ambm + am(bm+1 + bm+2 + · · ·+ bn)
< a1b1 + a2b2 + · · ·+ ambm + am(m− b1 − b2 − · · · − bm)
= a1b1 + a2b2 + · · ·+ ambm + am(1− b1) + am(1− b2) + · · ·+ am(1− bm)
≤ a1b1 + a2b2 + · · ·+ ambm + a1(1− b1) + a2(1− b2) + · · ·+ am(1− bm)
= a1 + a2 + · · ·+ am .

99. Let E and F be respective points on sides AB and BC of a triangle ABC for which AE = CF . The
circle passing through the points B,C,E and the circle passing through the points A,B, F intersect at
B and D. Prove that BD is the bisector of angle ABC.

Solution 1. Because of the concyclic quadrilaterals, 6 DEA = 180◦ − 6 BED = 6 DCF and 6 DFC =
180◦ − 6 DFB = 6 DAB . Since, also, AE = CF , ∆DAE ≡ ∆DFC (ASA) so that AD = DF . In the circle
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through ABFD, the equal chords AD and DF subtend equal angles ABD and FBD at the circumference.
The result follows.

Solution 2. 6 CDF = 6 CDE − 6 FDE = 180◦ − 6 ABC − 6 FDE = 6 FDA − 6 FDE = 6 EDA and
6 AED = 180◦− 6 BED = 6 BCD = 6 FCD. Since AE = CF , ∆EAD ≡ ∆CFD (ASA). The altitude from
D to AE is equal to the altitude from D to FC, and so D must be on the bisector of 6 ABC.

Solution 3. Let B be the point (0,−1) and D the point (0, 1). The centres of both circles are on the
right bisector of BD, namely the x−axis. Let the two circles have equations (x − a)2 + y2 = a2 + 1 and
(x− b)2 +y2 = b2 + 1. Suppose that y = mx−1 is a line through B; this line intersects the circle of equation
(x− a)2 + y2 = a2 + 1 in the point (

2(m+ a)
m2 + 1

,
m2 + 2am− 1

m2 + 1

)
and the circle of equation (x− b)2 + y2 = b2 + 1 in the point(

2(m+ b)
m2 + 1

,
m2 + 2bm− 1

m2 + 1

)
The distance between these two points is the square root of[

2(a− b)
m2 + 1

]2

+
[

2m(a− b)
m2 + 1

]2

=
4(a− b)2(1 +m2)

(m2 + 1)2
=

4(a− b)2

m2 + 1
.

Now suppose that the side AB of the triangle has equation y = m1x− 1 and the side BC the equation
y = m2x − 1, so that (A,E) and (C,F ) are the pairs of points where the lines intersect the circles. Then,
from the foregoing paragraph, we must have m2

1 + 1 = m2
2 + 1 or 0 = (m1 −m2)(m1 +m2). Since the sides

are distinct, it follows that m1 = −m2 and so BD bisects 6 ABC.

100. If 10 equally spaced points around a circle are joined consecutively, a convex regular inscribed decagon
P is obtained; if every third point is joined, a self-intersecting regular decagon Q is formed. Prove that
the difference between the length of a side of Q and the length of a side of P is equal to the radius of
the circle. [With thanks to Ross Honsberger.]

Solution 1. Let the decagon be ABCDEFGHIJ . Let BE and DI intersect at K and let AF and DI
intersect at L. Observe that AB‖DI‖EH and BE‖AF‖HI, so that ABKL and KIHE are parallelograms.
Now AB is a side of P and HE is a side of Q, and the length of the segment IL is the difference of the
lengths of EH = IK and AB = KL. Since L, being the intersection of the diameters AF and DI, is the
centre of the circle, the result follows.

Solution 2. [R. Barrington Leigh] Use the same notation as in Solution 1. Let O be the centre of
P . Now, AB is an edge of P , AD is an edge of Q, DO is a radius of the circle and BG a diameter.
Let AD and BO intersect at U . Identify in turn the angles 6 DOU = 72◦, 6 DAB = 36◦, 6 ABU = 72◦,
6 DUO = 6 BUA = 72◦, whence AU = AB, DU = DO and AD−AB = AD−AX = DX = DO, as desired.

Solution 3. Label the vertices of P as in Solution 1. Let O be the centre of P , and V be a point
on EB for which EV = OE. We have that 6 AOB = 36◦, 6 DOB = 6 OBA = 72◦, 6 BOE = 108◦

and 6 OEB = 6 OBE = 36◦. Also, 6 EOV = 6 EV O = 72◦ and OE = EV = OA = OB. Hence,
∆DAB = ∆EV O (SAS), so that OV = AB. Since 6 BV O = 108◦ and 6 BOV = 36◦, 6 OBV = 36◦, and so
BV = OV = AB. Hence BE −AB = EV +BV −AB = EV = OE, the radius.

Solution 4. Let the circumcircle of P and Q have radius 1. A side of P is the base of an isosceles
triangle with equal sides 1 and apex angle 36◦, so its length is 2 sin 18◦. Likewise, the length of a side of Q
is 2 sin 54◦. The difference between these is

2 sin 54◦ − 2 sin 18◦ = 2 cos 36◦ − 2 cos 72◦ = 2t− 2(2t2 − 1) = 2 + 2t− 4t2
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where t = cos 36◦. Now
t = cos 36◦ = − cos 144◦ = 1− 2 cos2 72◦

= 1− 2(2t2 − 1)2 = −8t4 + 8t2 − 1 ,

so that
0 = 8t4 − 8t2 + t+ 1 = (t+ 1)(8t3 − 8t2 + 1)

= (t+ 1)(2t− 1)(4t2 − 2t− 1) .

Since t is equal to neither −1 nor 1
2 , we must have that 4t2 − 2t = 1. Hence

2 sin 54◦ − 2 sin 18◦ = 2− (4t2 − 2t) = 1 ,

the radius of the circle.

101. Let a, b, u, v be nonnegative. Suppose that a5 + b5 ≤ 1 and u5 + v5 ≤ 1. Prove that

a2u3 + b2v3 ≤ 1 .

[With thanks to Ross Honsberger.]

Solution. By the arithmetic-geometric means inequality, we have that

2a5 + 3u5

5
=
a5 + a5 + u5 + u5 + u5

5
≥ 5
√
a10u15 = a2u3

and, similarly,
2b5 + 3v5

5
≥ b2v3 .

Adding these two inequalities yields the result.

102. Prove that there exists a tetrahedron ABCD, all of whose faces are similar right triangles, each face
having acute angles at A and B. Determine which of the edges of the tetrahedron is largest and which
is smallest, and find the ratio of their lengths.

Solution 1. Begin with AB, a side of length 1. Now construct a rectangle ACBD with diagonal AB, so
that |AC| = |BD| = s < t = |AD| = |BC|. The requisite values of s and t will be determined in due course.
We want to show that we can fold up D and C from the plane in which AB lies (like folding up the wings
of a butterfly) in such a way that we can obtain the desired tetrahedron.

When the triangles ADB and ACB lie flat, we see that C and D are distance 1 apart. Suppose that,
when we have folded up C and D to get the required tetrahedron, they are distance r apart. Then ACD
should be a right triangle similar to ABC. The hypotenuse of ∆ACD cannot be AC as AC < AD. Nor can
it be CD, for then, we would have AD = BC, AC = AC, and CD would have to have length 1, possible
only when ABCD is coplanar. So the hypotenuse must be AD. The similarity of ∆ADC and ∆ABC would
require that

1 : t : s = t : s : r

where r = |CD|. Thus, 1/t = t/s or s = t2 and t/s = s/r or r = s2/t = t3. So we must fold C and D until
they are distance t3 apart.

Is this possible? Since ∆ACB is right, 1 = t2 + s2 = t2 + t4, whence s = t2 = 1
2 (−1 +

√
5) < 1. Hence

r < 1. To arrange that we can make the distance between C and D equal to r, we must show that r exceeds
the minimum possible distance between C and D, which occurs when ∆ADB is folded flat partially covering
∆ACB. Suppose this has been done, with ABCD coplanar and C, D both on the same side of AB. Let P
and Q be the respective feet of the perpendiculars to AB from C and D. Then

|CP | = |DQ| = t3 , |AP | = |QB| = t4 , |AQ| = |PB| = t2 ,
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and
|CD| = |PQ| = t2 − t4 = (t4 + t6)− t4 = t6 < t3 .

When C and D are located, we have |AB| = 1, |AD| = |BC| = t, |AC| = |BD| = t2 and |CD| = t3.
Since all faces of the tetrahedron ABCD have sides in the ratio 1 : t : t2, all are similar right triangles and
AB : CD = 1 : t3.

Solution 2. Let α = 6 CAB and |AB| = 1. By the condition on the acute angles of triangles ACB
and ACD, 6 ACB = 6 ADB = 90◦, so that the triangles ∆ACD and ∆ADB, being similar and sharing a
hypotenuse, are congruent.

Suppose, if possible, that 6 BAD = α. Then AC = AD and so ∆ACD must be isosceles with its right
angle at A, contrary to hypothesis. So, 6 ABD = α and |BD| = |AC| = cosα, |AD| = |BC| = sinα.

Consider ∆ACD. Suppose that 6 ACD = 90◦. If 6 DAC = α, then ∆ABC ≡ ∆ADC and 1 =
|AB| = |AD| = sinα, yielding a contradiction. Hence 6 ADC = α, |AD| = |AC|/ sinα = cosα/ sinα and
|CD| = |AC| cotα = cos2 α/ sinα. Hence, looking at |AD|, we have that

cosα
sinα

= sinα =⇒ 0 = cosα− sin2 α = cos2 α+ cosα− 1 .

Therefore, cosα = 1
2 (
√

5− 1) and sin2 α = cosα.

Observe that |BC| sinα = sin2 α = cosα = |BD| and |BC| cosα = sinα cosα = cos2 α/ sinα = |CD|,
so that triangle BCD is right with 6 CDB = 90◦ and similar to the other three faces.

We need to check that this set-up is feasible. Using spatial coordinates, take

C ∼ (0, 0, 0) A ∼ (0, cosα, 0) B ∼ (sinα, 0, 0) .

Since 6 ACD = 90◦, D lies in the plane y = 0 and so has coordinates of the form (x, 0, z). Since 6 CDB = 90◦,
CD ⊥ DB, so that

0 = (x, 0, z) · (x− sinα, 0, z)− x2 + z2 − x sinα ,

Now |CD| = cosα sinα forces cos2 α sin2 α = x2 + z2. Hence

x sinα = cos2 α sin2 α =⇒ x = cos2 α sinα .

Therefore
z2 = (cos2 α− cos4 α) sin2 α = cos2 α sin4 α =⇒ z = cosα sin2 α ,

Hence D ∼ (cos2 α sinα, 0, cosα sin2 α).

Thus, letting sinα = t = 1
2 (
√

5 − 1), we have A ∼ (0, t2, 0), B ∼ (t, 0, 0), C ∼ (0, 0, 0), D ∼ (t5, 0, t4)
with t4 + t2 − 1 = 0, and |AB| = 1, |AD| = |BC| = t, |BD| = |AC| = t2 and |CD| = t3. [Exercise: Check
that the coordinates give the required distances and similar right triangles.] The ratio of largest to smallest
edges is 1 : t3 = 1 : [ 1

2 (
√

5− 1)]3/2 = 1 :
√

2 +
√

5.

We need to dispose of the other possibilities for ∆ACD. By the given condition, 6 DAC 6= 90◦. If
6 ADC = 90◦, then we have essentially the same situation as before with the roles of α and its complement,
and of C and D switched.

Comment. Another way in that was used by several solvers was to note that there are four right angles
involved among the four sides, and that at most three angles can occur at a given vertex of the tetrahedron.
It is straightforward to argue that it is not possible to have three of the right angles at either C or D. Since
all right angles occur at these two vertices, then there must be two at each. As an exercise, you might want
to complete the argument from this beginning.
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