## PROBLEMS FOR SEPTEMBER

Please send your solutions to
Professor E.J. Barbeau
Department of Mathematics
University of Toronto
Toronto, ON M5S 3G3
no later than October 31, 2001.

Notes. A unit cube (tetrahedron) is a cube (tetrahedron) all of whose side lengths are 1.
90. Let $m$ be a positive integer, and let $f(m)$ be the smallest value of $n$ for which the following statement is true:
given any set of $n$ integers, it is always possible to find a subset of $m$ integers whose sum is divisible by m

Determine $f(m)$.
[Comment. This problem is being reposed, as no one submitted a complete solution to this problem the first time around. Can you conjecture what $f(m)$ is? It is not hard to give a lower bound for this function. One approach is to try to relate $f(a)$ and $f(b)$ to $f(a b)$ and reduce the problem to considering the case that $m$ is prime; this give access to some structure that might help.]
103. Determine a value of the parameter $\theta$ so that

$$
f(x) \equiv \cos ^{2} x+\cos ^{2}(x+\theta)-\cos x \cos (x+\theta)
$$

is a constant function of $x$.
104. Prove that there exists exactly one sequence $\left\{x_{n}\right\}$ of positive integers for which

$$
x_{1}=1, \quad x_{2}>1, \quad x_{n+1}^{3}+1=x_{n} x_{n+2}
$$

for $n \geq 1$.
105. Prove that within a unit cube, one can place two regular unit tetrahedra that have no common point.
106. Find all pairs $(x, y)$ of positive real numbers for which the least value of the function

$$
f(x, y)=\frac{x^{4}}{y^{4}}+\frac{y^{4}}{x^{4}}-\frac{x^{2}}{y^{2}}-\frac{y^{2}}{x^{2}}+\frac{x}{y}+\frac{y}{x}
$$

is attained. Determine that minimum value.
107. Given positive numbers $a_{i}$ with $a_{1}<a_{2}<\cdots<a_{n}$, for which permutation $\left(b_{1}, b_{2}, \cdots, b_{n}\right)$ of these numbers is the product

$$
\prod_{i=1}^{n}\left(a_{i}+\frac{1}{b_{i}}\right)
$$

maximized?
108. Determine all real-valued functions $f(x)$ of a real variable $x$ for which

$$
f(x y)=\frac{f(x)+f(y)}{x+y}
$$

for all real $x$ and $y$ for which $x+y \neq 0$.

