PROBLEMS FOR FEBRUARY

Solutions should be submitted to
Prof. E.J. Barbeau
Department of Mathematics
University of Toronto
Toronto, ON M5S 3G3
no later than March 31, 2001
61. Let $S=1!2!3!\cdots 99!100$! (the product of the first 100 factorials). Prove that there exists an integer k for which $1 \leq k \leq 100$ and S / k ! is a perfect square. Is k unique? (Optional: Is it possible to find such a number k that exceeds 100?)
62. Let n be a positive integer. Show that, with three exceptions, $n!+1$ has at least one prime divisor that exceeds $n+1$.
63. Let n be a positive integer and k a nonnegative integer. Prove that

$$
n!=(n+k)^{n}-\binom{n}{1}(n+k-1)^{n}+\binom{n}{2}(n+k-2)^{n}-\cdots \pm\binom{ n}{n} k^{n}
$$

64. Let M be a point in the interior of triangle $A B C$, and suppose that D, E, F are points on the respective side $B C, C A, A B$. Suppose $A D, B E$ and $C F$ all pass through M. (In technical terms, they are cevians.) Suppose that the areas and the perimeters of the triangles $B M D, C M E, A M F$ are equal. Prove that triangle $A B C$ must be equilateral.
65. Suppose that $X T Y$ is a straight line and that $T U$ and $T V$ are two rays emanating from T for which $\angle X T U=\angle U T V=\angle V T Y=60^{\circ}$. Suppose that P, Q and R are respective points on the rays $T Y, T U$ and $T V$ for which $P Q=P R$. Prove that $\angle Q P R=60^{\circ}$.
66. (a) Let $A B C D$ be a square and let E be an arbitrary point on the side $C D$. Suppose that P is a point on the diagonal $A C$ for which $E P \perp A C$ and that Q is a point on $A E$ produced for which $C Q \perp A E$. Prove that B, P, Q are collinear.
(b) Does the result hold if the hypothesis is weakened to require only that $A B C D$ is a rectangle?
