Solutions and Comments

43. Two players play a game: the first player thinks of n integers $x_{1}, x_{2}, \cdots, x_{n}$, each with one digit, and the second player selects some numbers $a_{1}, a_{2}, \cdots, a_{n}$ and asks what is the value of the sum $a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}$. What is the minimum number of questions used by the second player to find the integers $x_{1}, x_{2}, \cdots, x_{n}$?

Solution. We are going to prove that the second player needs only one question to find the integers x_{1}, x_{2}, \cdots, x_{n}. Indeed, let him choose $a_{1}=100, a_{2}=100^{2}, \cdots, a_{n}=100^{n}$ and ask for the value of the sum

$$
S_{n}=100 x_{1}+100^{2} x_{2}+\cdots+100^{n} x_{n}
$$

Note that

$$
\begin{aligned}
& \left|\frac{100 x_{1}+100^{2} x_{2}+\cdots+100^{n-1} x_{n-1}}{100^{n}}\right| \\
& \quad \leq \frac{100\left|x_{1}\right|+100^{2}\left|x_{2}\right|+\cdots+100^{n-1}\left|x_{n-1}\right|}{100^{n}} \\
& \quad \leq \frac{9\left(100+100^{2}+\cdots+100^{n-1}\right)}{100^{n}} \\
& \quad<\frac{10^{2 n-1}}{10^{2 n}}=\frac{1}{10}
\end{aligned}
$$

Hence

$$
\left|\frac{S_{n}}{100^{n}}-x_{n}\right|=\frac{100 x_{1}+100^{2} x_{2}+\cdots+100^{n-1} x_{n-1}}{100^{n}}<\frac{1}{10}
$$

and x_{n} can be obtained. Now, we can find the sum

$$
S_{n-1}=S_{n}-100^{n} x_{n}=100 x_{1}+100^{2} x_{2}+\cdots+100^{n-1} x_{n-1}
$$

and similarly obtain x_{n-1}. The procedure continues until all the numbers are found.
44. Find the permutation $\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$ of the set $\{1,2, \cdots, n\}$ for which the sum

$$
S=\left|a_{2}-a_{1}\right|+\left|a_{3}-a_{2}\right|+\cdots+\left|a_{n}-a_{n-1}\right|
$$

has maximum value.
Solution. Let $a=\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ be a permutation of $\{1,2, \cdots, n\}$ and define

$$
f(a)=\sum_{k=1}^{n-1}\left|a_{k+1}-a_{k}\right|+\left|a_{n}-a_{1}\right|
$$

With $a_{n+1}=a_{1}$ and $\epsilon_{0}=\epsilon_{n}$, we find that

$$
f(a)=\sum_{k=1}^{n} \epsilon_{k}\left(a_{k+1}-a_{k}\right)=\sum_{k=1}^{n}\left(\epsilon_{k-1}-\epsilon_{k}\right) a_{k}
$$

where $\epsilon_{1}, \epsilon_{2}, \cdots, \epsilon_{n}$ are all equal to 1 or -1 . Thus

$$
f(a)=\sum_{k=1}^{n} \beta_{k} k
$$

where each β_{k} is one of $-2,0,2$, and $\sum_{k=1}^{n} \beta_{k}=0$ (there are the same number of positive and negative numbers among the β_{k}).

Therefore

$$
f(a)=2\left(x_{1}+x_{2}+\cdots+x_{m}\right)-2\left(y_{1}+y_{2}+\cdots+y_{m}\right)
$$

where $x_{1}, \cdots, x_{m}, y_{1}, \cdots, y_{m} \in\{1,2, \cdots, n\}$ and are distinct from each other. Hence $f(a)$ is maximum when $\left\{x_{1}, x_{2}, \cdots, x_{m}\right\}=\{n, n-1, \cdots, n-m+1\},\left\{y_{1}, y_{2}, \cdots, y_{m}\right\}=\{1,2, \cdots, m\}$ with $m=\lfloor n / 2\rfloor$, i.e., m is as large as possible. The maximum value is

$$
2\left\lfloor\frac{n}{2}\right\rfloor\left(n-\left\lfloor\frac{n}{2}\right\rfloor\right) .
$$

This value is attained by taking

$$
a=(s+1,1, s+2,2, \cdots, 2 s, s) \quad \text { when } n=2 s
$$

and

$$
a=(s+2,1, s+3,2, \cdots, 2 s+1, s, s+1) \quad \text { when } n=2 s+1
$$

Since $\left|a_{n}-a_{1}\right|=1$ for these permutations, the maximum value of the given expression is

$$
2\left\lfloor\frac{n}{2}\right\rfloor\left(n-\left\lfloor\frac{n}{2}\right\rfloor\right)-1 .
$$

This is equal to $2 s^{2}-1$ when $n=2 s$, and to $2 s(s+1)-1$ when $n=2 s+1$.
45. Prove that there is no nonconstant polynomial $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$ with integer coefficients a_{i} for which $p(m)$ is a prime number for every integer m.

Solution. Let a be an integer, for which $p(a) \neq-1,0,1$. (If there is no such a, then p cannot take all prime values.) Suppose that b is a prime divisor of $p(a)$. Now, for any integer k,

$$
p(a+k b)-p(a)=a_{n}\left[(a+k b)^{n}-a^{n}\right]+a_{n-1}\left[(a+k b)^{n-1}-a_{n-1}\right]+\cdots+a_{1}[(a+k b)-a] .
$$

It can be seen that b is a divisor of $p(a+k b)-p(a)$ and hence of $p(a+k b)$ for every integer k. Both of the equations $p(x)=b$ and $p(x)=-b$ have at most finitely many roots. So some of the values of $p(a+k b)$ must be composite, and the result follows.

Comment. It should have been stated in the problem that the polynomial was nonconstant, or had positive degree.
46. Let $a_{1}=2, a_{n+1}=\frac{a_{n}+2}{1-2 a_{n}}$ for $n=1,2, \cdots$. Prove that
(a) $a_{n} \neq 0$ for each positive integer n;
(b) there is no integer $p \geq 1$ for which $a_{n+p}=a_{n}$ for every integer $n \geq 1$ (i.e., the sequence is not periodic).

Solution. (a) We prove that $a_{n}=\tan n \alpha$ where $\alpha=\arctan 2$ by mathematical induction. This is true for $n=1$. Assume that it holds for $n=k$. Then

$$
a_{k+1}=\frac{2+a_{n}}{1-2 a_{n}}=\frac{\tan \alpha+\tan n \alpha}{1-\tan \alpha \tan n \alpha}=\tan (n+1) \alpha
$$

as desired.
Suppose that $a_{n}=0$ with $n=2 m+1$. Then $a_{2 m}=-2$. However,

$$
a_{2 m}=\tan 2 m \alpha=\frac{2 \tan m \alpha}{1-\tan ^{2} m \alpha}=\frac{2 a_{m}}{1-a_{m}^{2}},
$$

whence

$$
\frac{2 a_{m}}{1-a_{m}^{2}}=-2 \Leftrightarrow a_{m}=\frac{1 \pm \sqrt{5}}{2}
$$

which is not possible, since a_{m} has to be rational.
Suppose that $a_{n}=0$ with $n=2^{k}(2 m+1)$ for some positive integer k. Then

$$
0=a_{n}=\tan 2 \cdot 2^{k-1}(2 m+1) \alpha=\frac{2 \tan 2^{k-1}(2 m+1)}{1-\tan ^{2} 2^{k-1}(2 m+1)}=\frac{2 a_{n / 2}}{1-a_{n / 2}^{2}}
$$

so that $a_{n / 2}=0$. Continuing step by step backward, we finally come to $a_{2 m+1}=0$, which has already been shown as impossible.
(b) Assume, if possible, that the sequence is periodic, i.e., there is a positive integer p such that $a_{n+p}=a_{n}$ for every positive integer n. Thus

$$
\tan (n+p) \alpha-\tan n \alpha=\frac{\sin p \alpha}{\cos (n+p) \alpha \cos n \alpha}=0
$$

Therefore $\sin p \alpha=0$ and so $a_{p}=\tan p \alpha=0$, which, as we have shown, is impossible. The desired result follows.
47. Let $a_{1}, a_{2}, \cdots, a_{n}$ be positive real numbers such that $a_{1} a_{2} \cdots a_{n}=1$. Prove that

$$
\sum_{k=1}^{n} \frac{1}{s-a_{k}} \leq 1
$$

where $s=1+a_{1}+a_{2}+\cdots+a_{n}$.
Solution. First, we recall that Chebyshev's Inequalities:
(1) if the vectors $\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ and $\left(b_{1}, b_{2}, \cdots, b_{n}\right)$ are similarly sorted (that is, both rising or both falling), then

$$
\frac{a_{1} b_{1}+\cdots+a_{n} b_{n}}{n} \geq \frac{a_{1}+\cdots+a_{n}}{n} \cdot \frac{b_{1}+\cdots+b_{n}}{n}
$$

(2) if the vectors $\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ and $\left(b_{1}, b_{2}, \cdots, b_{n}\right)$ are oppositely sorted (that is, one rising and the other falling), then

$$
\frac{a_{1} b_{1}+\cdots+a_{n} b_{n}}{n} \leq \frac{a_{1}+\cdots+a_{n}}{n} \cdot \frac{b_{1}+\cdots+b_{n}}{n}
$$

If $x_{1}, x_{2}, \cdots, x_{n}$ are positive real numbers with $x_{1} \leq x_{1} \leq \cdots \leq x_{n}$, then $x_{1}^{n} \leq x_{2}^{n} \leq \cdots \leq x_{n}^{n}$. From Chebyshev's Inequality (1), we have, for each $k=1,2, \cdots, n$, that

$$
\sum_{i=1, i \neq k}^{n} x_{i}^{n}=\sum_{i=1, i \neq k}^{n} x_{i}^{n-1} x_{i} \geq \frac{1}{n-1}\left(\sum_{i=1, i \neq k}^{n} x_{i}\right)\left(\sum_{i=1, i \neq k}^{n} x_{i}^{n-1}\right)
$$

The Arithmetic-Geometric Means Inequality yields

$$
\sum_{i=1, i \neq k}^{n} x_{i}^{n-1} \geq(n-1) x_{1} \cdots x_{k-1} x_{k+1} \cdots x_{n}
$$

for $k=1, \cdots, n$. Therefore,

$$
\sum_{i=1, i \neq k}^{n} x_{i}^{n} \geq\left(x_{1} \cdots x_{k-1} x_{k+1} \cdots x_{n}\right) \sum_{i=1, i \neq k}^{n} x_{i}
$$

for each k. This inequality can also be written

$$
\begin{aligned}
& x_{1}^{n}+\cdots+x_{k-1}^{n}+x_{k+1}^{n}+\cdots x_{n}^{n}+x_{1} x_{2} \cdots x_{n} \\
& \quad \geq x_{1} \cdots x_{k-1} x_{k+1} \cdots x_{n}\left(x_{1}+x_{2}+\cdots+x_{n}\right),
\end{aligned}
$$

or

$$
\frac{1}{x_{1} x_{2} \cdots x_{n}+x_{1}^{n}+\cdots+x_{k-1}^{n}+x_{k+1}^{n}+\cdots+x_{n}^{n}} \leq \frac{1}{x_{1}+x_{2}+\cdots+x_{n}} \cdot \frac{1}{x_{1} \cdots x_{k-1} x_{k+1} \cdots x_{n}} .
$$

Adding up these inequalities, for $1 \leq k \leq n$, we get

$$
\sum_{k=1}^{n} \frac{1}{x_{1} x_{2} \cdots x_{n}+x_{1}^{n}+\cdots+x_{k-1}^{n}+x_{k+1}^{n}+\ldots x_{n}^{n}} \leq \frac{1}{x_{1} x_{2} \cdots x_{n}}
$$

Now, let the x_{k}^{n} be equal to the a_{k} in increasing order to obtain the desired result.
48. Let $A_{1} A_{2} \cdots A_{n}$ be a regular n-gon and d an arbitrary line. The parallels through A_{i} to d intersect its circumcircle respectively at $B_{i}(i=1,2, \cdots, n$. Prove that the sum

$$
S=\left|A_{1} B_{1}\right|^{2}+\cdots+\left|A_{n} B_{n}\right|^{2}
$$

is independent of d.
Solution. Select a system of coordinates so that O is the centre of the circumcircle and the x-axis (or real axis) is orthogonal to d. Without loss of generality, we may assume that the radius of the circumcircle is of length 1. Let a_{k} the the affix (complex number representative) of $A_{k}(1 \leq k \leq n)$. Then the a_{k} are solutions of the equation $z^{n}=\lambda$, where λ is a complex number with $|\lambda|=1$. Since A_{k} and B_{k} are symmetrical with respect to the real axis, the affix of B_{k} is $\overline{a_{k}}$, the complex conjugate of a_{k}, for $1 \leq k \leq n$, Thus

$$
A_{k} B_{k}^{2}=\left|a_{k}-\overline{a_{k}}\right|^{2}=\left(a_{k}-\overline{a_{k}}\right)\left(\overline{a_{k}}-a_{k}\right)=2 a_{k} \overline{a_{k}}-a_{k}^{2}-{\overline{a_{k}}}^{2}=2-a_{k}-{\overline{a_{k}}}^{2} .
$$

Summing these inequalities yields that

$$
\sum_{k=1}^{n} A_{k} B_{k}^{2}=2 n-\sum_{k=1}^{n} a_{k}^{2}-\sum_{k=1}^{n}{\overline{a_{k}}}^{2}
$$

Since $\left\{a_{k}: 1 \leq k \leq n\right\}$ is a complete set of solutions of the equation $z^{n}=\lambda$, their sum and the sum of their pairwise products vanishes. Hence

$$
0=\sum_{k=1}^{n} a_{k}^{2}=\sum_{k=1}^{n}{\overline{a_{k}}}^{2}
$$

Hence $\sum_{k=1}^{n} A_{k} B_{k}^{2}=2 n$.

