Solutions and Comments
- 25.
-
Let a, b, c be non-negative numbers such that
a + b + c = 1. Prove that
|
ab c + 1
|
+ |
bc a + 1
|
+ |
ca b + 1
|
£ |
1 4
|
. |
|
When does equality hold?
Solution. It is straightforward to show that the inequality
holds when one of the numbers is equal to zero. Equality holds
if and only if the other two numbers are each equal to 1/2.
Henceforth, assume that all values are positive.
Since a + b + c = 1, at least one of the numbers is less than
4/9. Assume that c < 4/9. Let E denote the left side of the
inequality. Then
E = abc |
æ ç
è
|
|
1 a
|
+ |
1 b
|
+ |
1 c
|
- |
1 a + 1
|
- |
1 b + 1
|
- |
1 c + 1
|
|
ö ÷
ø
|
. |
|
Since
|
1 a + 1
|
+ |
1 b + 1
|
+ |
1 c + 1
|
= |
1 4
|
[(a+1) + (b+1) + (c+1)] |
é ê
ë
|
|
1 a + 1
|
+ |
1 b + 1
|
+ |
1 c + 1
|
|
ù ú
û
|
³ |
9 4
|
, |
|
(by the Cauchy-Schwarz Inequality for example), we have that
E £ abc |
æ ç
è
|
|
1 a
|
+ |
1 b
|
+ |
1 c
|
- |
9 4
|
|
ö ÷
ø
|
= ab + bc + ca - |
9 4
|
abc . |
|
On the other hand, (1 - c)2 = (a + b)2 ³ 4ab, whence
ab £ 1/4(1 - c)2 . Therefore
|
|
£ ab + c(a + b) - |
9 4
|
abc - |
1 4
|
|
| |
= ab |
æ ç
è
|
1 - |
9 4
|
c |
ö ÷
ø
|
+ c(1 - c) - |
1 4
|
|
| |
£ |
1 4
|
(1 - c)2 |
æ ç
è
|
1 - |
9 4
|
c |
ö ÷
ø
|
+ c(1 - c) - |
1 4
|
|
| |
= - |
1 16
|
c (3c - 1)2 £ 0 . |
|
| |
|
Equality occurs everywhere if and only if a = b = c = 1/3.
- 26.
-
Each of m cards is labelled by one of the numbers
1, 2, ¼, m. Prove that, if the sum of labels of any
subset of cards is not a multiple of m + 1, then each card is
labelled by the same number.
Solution. Let ak be the label of the kth card, and
let sn = åk = 1n ak for n = 1, 2, ¼, m. Since the
sum of the labels of any subset of cards is not a multiple of
m + 1, we get different remainders when we divide the sn by
m + 1. These remainders must be 1, 2, ¼, m in some order.
Hence there is an index i Î { 1, 2, ¼, m } for which
a2 º si (mod m + 1). If i were to exceed 1, then
we would have a contradiction, since then si - a2 would be
a multiple of m + 1. Therefore, a2 º s1 = a1, so that
a2 º a1 (mod m + 1), whence a2 = a1. By cyclic rotation of the
ak, we can argue that all of the ak are equal.
- 27.
-
Find the least number of the form |36m - 5n |
where m and n are positive integers.
Solution. Since the last digit of 36m is 6 and the last digit
of 5n is 5, then the last digit of 36m - 5n is 1
when 36m > 5n and the last
digit of 5n - 36m is 9 when 5n > 36m. If 36m - 5n = 1, then
5n = 36m - 1 = (6m + 1)(6m - 1) |
|
whence 6m + 1 must be a power of 5, an impossibility.
36m - 5n can be neither -1 nor 9. If 5n - 36m = 9,
then 5n = 9(4·36m-1 + 1), which is impossible.
For m = 1 and n = 2, we have that
36m - 5n = 36 - 25 = 11, and this is the least number of the given
form.
- 28.
-
Let A be a finite set of real numbers which contains at
least two elements and let f : A ® A be a function such
that |f(x) - f(y) | < |x - y | for every
x, y Î A, x ¹ y. Prove that there is a Î A for which
f(a) = a. Does the result remain valid if A is not a finite set?
Solution 1. Let a Î A, a1 = f(a), and, for n ³ 2,
an = f(an-1). Consider the sequence { xn } with
where n = 1, 2, ¼. Since A is a finite set and each an
belongs to A, there are only a finite number of distinct
xn. Let xk = minn ³ 1 { xn }; we prove
by contradiction that xk = 0.
Suppose if possible that xk > 0. Then
xk = |ak+1 - ak | > |f(ak+1) - f(ak) | = |ak+2 - ak+1 | = xk+1 . |
|
But this does not agree with the selection of xk. Hence,
xk = 0, and this is equivalent to ak+1 = ak or
f(ak) = ak. The desired result follows.
Solution 2. We first prove that f(A) ¹ A.
Suppose, if possible, that f(A) = A. Let M be the largest
and m be the smallest number in A. Since f(A) = A, there
are elements a1 and a2 in A for which M = f(a1) and
m = f(a2). Hence
M - m = |f(a1) - f(a2) | < |a1 - a2 | £ |M - m | = M - m |
|
which is a contradiction. Therefore, f(A) Ì A.
Note that A Ê f(A) Ê f2 (A) Ê ¼ Ê fn(A) Ê ¼. In fact, we can
extend the foregoing argument to show strict inclusion
as long as the sets in question have more than one element:
A É f(A) É f2 (A) É ¼ É fn (A) É ¼ . |
|
(The superscripts indicate multiple composites of f.)
Since A is a finite set, there must be a positive integer
m for which fm (A) = { a }, so that fm+1 (A) = fm (A). Thus, f(a) = a.
Example. If A is not finite, the result may fail.
Indeed, we can take A = (0, 1/2) (the open interval of
real numbers strictly between 0 and 1/2) or
A = { 2-2n : n = 1, 2, ¼} and f(x) = x2.
- 29.
-
Let A be a nonempty set of positive integers such that
if a Î A, then 4a and ëÖa û
both belong to A. Prove that
A is the set of all positive integers.
Solution. (i) Let us first prove that 1 Î A. Let a Î A.
Then we have
ëa1/2 û Î A , ëëa1/2 û1/2 û Î A , ¼ , ë¼ëa1/2 û1/2 û1/2 ¼û Î A , ¼ . |
|
Also, the following inequalities are true
1 £ ëa1/2 û £ a1/2 , 1 £ ëëa1/2 û1/2 û £ a1/22 , ¼ , 1 £ ë¼ëa1/2 û1/2 û1/2 ¼û £ a1/2n , |
|
where there are n brackets in the general inequality.
There is a sufficiently large positive integer k for which
a1/2k £ 1.5, and for this k, we have, with k
brackets,
1 £ ë¼ëa1/2 û1/2 û1/2 ¼û £ a1/2k £ 1.5 , |
|
and thus
ë¼ëëa1/2 û1/2 û1/2 ¼û = 1 , |
|
(ii) We next prove that 2n Î A for n = 1, 2, ¼.
Indeed, since 1 Î A, we obtain that, for each positive
integer n, 22n Î A
so that 2n = ëÖ{22n} û Î A.
(iii) We finally prove that an arbitrary positive integer m is
in A. It suffices to show that there is a positive integer
k for which m2k Î A. For each positive integer k, there
is a positive integer pk such that 2pk £ m2k < 2pk+1
(we can take pk = ëlog2 m2k û). For k sufficiently
large, we have the inequality
|
æ ç
è
|
1 + |
1 m
|
|
ö ÷
ø
|
2k
|
³ 1 + |
1 m
|
·2k > 4 . |
|
This combined with the foregoing inequality produces
2pk £ m2k < 2pk + 1 < 2pk + 2 < (m + 1)2k . (*) |
|
Since 22(pk + 1)+1 Î A, we have that
ë | Ö
|
22(pk + 1) + 1
|
û = ë2pk + 1 Ö2 û Î A . |
|
Hence, with k+1 brackets,
ë¼ëë2(pk + 1)Ö2 û1/2û1/2 ¼û Î A . |
|
On the other hand, using (*), we get
m2k < 2pk + 1 £ ë2(pk + 1) Ö2 û < (m + 1)2k |
|
and, then, with k+1 brackets,
m £ ë¼ëë2(pk + 1)Ö2 û1/2û1/2 ¼û < m+1 . |
|
Thus,
m = ë¼ëë2(pk + 1)Ö2 û1/2û1/2 ¼û Î A . |
|
- 30.
-
Find a point M within a regular pentagon for which the sum of
its distances to the vertices is minimum.
Solution. We solve this problem for the regular n-gon
A1 A2 ¼An. Choose a system of coordinates centred at
O (the circumcentre) such that
Ak ~ |
æ ç
è
|
r cos |
2kp n
|
, r sin |
2kp n
|
|
ö ÷
ø
|
, r = ||OAk || |
|
for k = 1, 2, ¼, n. Then
|
n å
k = 1
|
OAk = |
n å
k = 1
|
|
æ ç
è
|
r cos |
2kp n
|
, r sin |
2kp n
|
|
ö ÷
ø
|
= |
æ ç
è
|
r |
n å
k = 1
|
cos |
2kp n
|
, r |
n å
k = 1
|
sin |
2kp n
|
|
ö ÷
ø
|
= (0, 0) . |
|
Indeed, letting z = cos[(2p)/n] + isin[(2p)/n]
and using DeMoivreß Theorem, we have that zn = 1 and
|
|
n å
k = 1
|
cos |
2kp n
|
+ i |
n å
k = 1
|
sin |
2kp n
|
|
|
= |
n å
k = 1
|
|
æ ç
è
|
cos |
2p n
|
+ i sin |
2p n
|
|
ö ÷
ø
|
k
|
|
| |
= |
n å
k = 1
|
zk = z |
æ ç
è
|
|
1 - zn 1 - z
|
|
ö ÷
ø
|
= 0 , |
|
| |
|
whence åk = 1n cos(2pk/n) = åk = 1n sin(2pk/n) = 0.
On the other hand,
|
|
= |
1 r
|
|
n å
k = 1
|
||OAk -OM|| ||OAk || |
| |
³ |
1 r
|
|
n å
k = 1
|
(OAk -OM) ·OAk |
| |
= |
1 r
|
|
æ ç
è
|
|
n å
k = 1
|
||OAk||2 - ||OM || |
n å
k = 1
|
OAk |
ö ÷
ø
|
|
| |
= |
n å
k = 1
|
r = |
n å
k = 1
|
||OAk || . |
|
| |
|
Equality occurs if and only if M = O, so that O is the desired point.