## International Mathematical Talent Search - Round 9

Problem 1/9. An $m \times n$ grid is placed so that it has it's corners at $(0,0)$ and $(m, n)$. A legal move is defined as a move either one unit in the positive $y$ direction or one unit in the positive $x$ direction. The point $(i, j)$, where $0 \leq i \leq m$ and $0 \leq j \leq n$, is removed from the grid so that it is no longer possible to pass through this point on the way to $(m, n)$. How many possible paths are there from $(0,0)$ to $(m, n)$ ?
Problem 2/9. Given a point $P$ and two straight line segments on a rectangular piece of paper in such a way that the intersection point $Q$ of the straight lines does not lie on the paper. How can we construct the straight line $P Q$ with the help of a ruler if we are allowed to draw only within the limits of the paper?
Problem 3/9. A convex polygon has 1993 vertices which are colored so that neighboring vertices are of different colors. Prove that one can divide the polygon into triangles with non-intersecting diagonals whose endpoints are of different colors.

Problem 4/9. A triangle is called Heronian if its sides and area are integers. Determine all five Heronian triangles whose perimeter is numerically the same as its area.
Problem 5/9. A set of five "Trick Math Cubes" is shown schematically on the right. A "magician" asks you to roll them and to add the five numbers on top of them. He starts adding them at the same time, and writes down the correct answer on a piece of paper long before you are finished with the task. How does he do it? Expose and explain this trick.


