International Mathematical Talent Search - Round 8

Problem 1/8. Prove that there is no triangle whose altitudes are of length 4, 7 , and 10 units.
Problem 2/8. As shown on the right, there is a real number $x, 0<x<1$, so that the resulting configuration yields a dissection of the unit square into seven similar right triangles. This x must satisfy a monic polynomial of degree 5 . Find that polynomial. (Note: A polynomial in x is monic if the coefficient of the highest power of x is 1 .)

Problem 3/8. (i) Is it possible to rearrange the numbers $1,2,3, \ldots, 9$ as $a(1), a(2), a(3), \ldots, a(9)$ so that all the numbers listed below are different? Prove your assertion.

$$
|a(1)-1|,|a(2)-2|,|a(3)-3|, \ldots,|a(9)-9|
$$

(ii) Is it possible to rearrange the numbers $1,2,3, \ldots, 9,10$ as $a(1), a(2)$, $a(3), \ldots, a(9), a(10)$ so that all the numbers listed below are different? Prove your assertion.

$$
|a(1)-1|,|a(2)-2|,|a(3)-3|, \ldots,|a(9)-9|,|a(10)-10|
$$

Problem 4/8. In a 50-meter run, Anita can give at most a 4-meter advantage to Bob and catch up with him by the finish line. In a 200-meter run, Bob can give at most a 15-meter advantage to Carol and catch up with her by the end of the race. Assuming that all three of them always proceed at a constant speed, at most how many meters of advantage can Anita give to Carol in a $1,000-$ meter run and still catch up with her?
Problem 5/8. Given that a, b, x, and y are real numbers such that

$$
\begin{aligned}
a+b & =23 \\
a x+b y & =79 \\
a x^{2}+b y^{2} & =217, \\
a x^{3}+b y^{3} & =691,
\end{aligned}
$$

determine $a x^{4}+b y^{4}$.

