International Mathematical Talent Search – Round 7

Problem 1/7. In trapezoid ABCD, the diagonals intersect at E, the area of $\triangle ABE$ is 72, and the area of $\triangle CDE$ is 50. What is the area of trapezoid ABCD?

Problem 2/7. Prove that if a, b, and c are positive integers such that $c^2 = a^2 + b^2$, then both $c^2 + ab$ and $c^2 - ab$ are also expressible as the sums of squares of two positive integers.

Problem 3/7. For n a positive integer, denote by P(n) the product of all positive integers divisors of n. Find the smallest n for which

$$P(P(P(n))) > 10^{12}.$$

Problem 4/7. In an attempt to copy down from the board a sequence of six positive integers in arithmetic progression, a student wrote down the five numbers,

accidentally omitting one. He later discovered that he also miscopied one of them. Can you help him and recover the original sequence?

Problem 5/7. Let T = (a, b, c) be a triangle with sides a, b, and c and area \triangle . Denote by T' = (a', b', c') the triangle whose sides are the altitudes of T (i.e., $a' = h_a$, $b' = h_b$, $c' = h_c$) and denote its area by \triangle' . Similarly, let T'' = (a'', b'', c'') be the triangle formed from the altitudes of T', and denote its area by \triangle'' . Given that $\triangle' = 30$ and $\triangle'' = 20$, find \triangle .