International Mathematical Talent Search - Round 7

Problem 1/7. In trapezoid $A B C D$, the diagonals intersect at E, the area of $\triangle A B E$ is 72 , and the area of $\triangle C D E$ is 50 . What is the area of
 trapezoid $A B C D$?
Problem 2/7. Prove that if a, b, and c are positive integers such that $c^{2}=$ $a^{2}+b^{2}$, then both $c^{2}+a b$ and $c^{2}-a b$ are also expressible as the sums of squares of two positive integers.
Problem 3/7. For n a positive integer, denote by $P(n)$ the product of all positive integers divisors of n. Find the smallest n for which

$$
P(P(P(n)))>10^{12} .
$$

Problem 4/7. In an attempt to copy down from the board a sequence of six positive integers in arithmetic progression, a student wrote down the five numbers,

$$
113,137,149,155,173,
$$

accidentally omitting one. He later discovered that he also miscopied one of them. Can you help him and recover the original sequence?

Problem 5/7. Let $T=(a, b, c)$ be a triangle with sides a, b, and c and area \triangle. Denote by $T^{\prime}=\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ the triangle whose sides are the altitudes of T (i.e., $a^{\prime}=h_{a}, b^{\prime}=h_{b}, c^{\prime}=h_{c}$) and denote its area by \triangle^{\prime}. Similarly, let $T^{\prime \prime}=\left(a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}\right)$ be the triangle formed from the altitudes of T^{\prime}, and denote its area by $\triangle^{\prime \prime}$. Given that $\triangle^{\prime}=30$ and $\Delta^{\prime \prime}=20$, find \triangle.

