International Mathematical Talent Search - Round 42

Problem 1/42. How many positive five-digit integers are there consisting of the digits $1,2,3,4,5,6,7,8,9$, in which one digit appears once and two digits appear twice? For example, 41174 is one such number, while 75355 is not.

Problem 2/42. Determine, with proof, the positive integer whose square is exactly equal to the number

$$
1+\sum_{i=1}^{2001}(4 i-2)^{3}
$$

Problem 3/42. Factor the expression

$$
30\left(a^{2}+b^{2}+c^{2}+d^{2}\right)+68 a b-75 a c-156 a d-61 b c-100 b d+87 c d .
$$

Problem 4/42. Let $X=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}\right)$ be a 9-long vector of integers. Determine X if the following seven vectors were all obtained from X by deleting three of its components:

$$
\begin{array}{lll}
Y_{1}=(0,0,0,1,0,1), & Y_{2}=(0,0,1,1,1,0), & Y_{3}=(0,1,0,1,0,1), \\
Y_{4}=(1,0,0,0,1,1), & Y_{5}=(1,0,1,1,1,1), & Y_{6}=(1,1,1,1,0,1), \\
Y_{7}=(1,1,0,1,1,0) . & &
\end{array}
$$

Problem 5/42. Let R and S be points on the sides $B C$ and $A C$, respectively, of $\triangle A B C$, and let P be the intersection of $A R$ and $B S$. Determine the area of $\triangle A B C$ if the areas of $\triangle A P S, \triangle A P B$, and $\triangle B P R$ are 5,6, and 7, respectively.

