International Mathematical Talent Search - Round 4

Problem 1/4. Use each of the digits $1,2,3,4,5,6,7,8,9$ exactly twice to form distinct prime numbers whose sum is as small as possible. What must this minimal sum be? (Note: The five smallest primes are $2,3,5,7$, and 11.)
Problem 2/4. Find the smallest positive integer, n, which can be expressed as the sum of distinct positive integers a, b, and c, such that $a+b, a+c$, and $b+c$ are perfect squares.
Problem 3/4. Prove that a positive integer can be expressed in the form $3 x^{2}+y^{2}$ if and only if it can also be expressed in the form $u^{2}+u v+v^{2}$, where x, y, u, and v are positive integers.
Problem 4/4. Let $\triangle A B C$ be an arbitrary triangle, and construct P, Q, and R so that each of the angles marked is 30°. Prove that $\triangle P Q R$ is an equilateral triangle.

Problem 5/4. The sides of $\triangle A B C$ measure 11, 20, and 21 units. We fold it along $P Q, Q R$, and $R P$, where P, Q, and R are the midpoints of its sides, until A, B, and C coincide. What is the volume of the resulting tetrahedron?

