International Mathematical Talent Search - Round 38

Problem 1/38. A well-known test for divisibility by 19 is as follows: Remove the last digit of the number, add twice that digit to the truncated number, and keep repeating this procedure until a number less than 20 is obtained. Then, the original number is divisible by 19 if and only if the final number is 19 . The method is exemplified on the right; it is easy to check that indeed 67944 is divisible by 19 , while 44976 is not.

Find and prove a similar test for divisibility by 29 .
Problem 2/38. Compute $1776^{1492!}(\bmod 2000)$; i.e., the remainder when $1776^{1492!}$ is divided by 2000 . (As usual, the exclamation point denotes factorial.)

Problem 3/38. Given the arithmetic progression of integers

$$
308,973,1638,2303,2968,3633,4298
$$

determine the unique geometric progression of integers,

$$
b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6},
$$

so that
$308<b_{1}<973<b_{2}<1638<b_{3}<2303<b_{4}<2968<b_{5}<3633<b_{6}<4298$.
Problem 4/38. Prove that every polyhedron has two vertices at which the same number of edges meet.

Problem 5/38. In $\triangle A B C$, segments $P Q, R S$, and $T U$ are parallel to sides $A B, B C$, and $C A$, respectively, and intersect at the points X, Y, and Z, as shown in the figure on the right.

Determine the area of $\triangle A B C$ if each of the segments $P Q, R S$, and $T U$ bisects (halves) the area of $\triangle A B C$, and if the area of $\triangle X Y Z$ is one unit. Your answer should be in the form $a+b \sqrt{2}$, where a and b are positive integers.

