International Mathematical Talent Search - Round 37

Problem 1/37. Determine the smallest five-digit positive integer N such that $2 N$ is also a five-digit integer and all ten digits from 0 to 9 are found in N and $2 N$.

Problem 2/37. It was recently shown that $2^{2^{24}}+1$ is not a prime number. Find the four rightmost digits of this number.

Problem 3/37. Determine the integers a, b, c, d, and e for which

$$
\left(x^{2}+a x+b\right)\left(x^{3}+c x^{2}+d x+e\right)=x^{5}-9 x-27 .
$$

Problem 4/37. A sequence of real numbers $s_{0}, s_{1}, s_{2}, \ldots$ has the property that

$$
\begin{aligned}
s_{i} s_{j} & =s_{i+j}+s_{i-j} \text { for all nonnegative integers } i \text { and } j \text { with } i \geq j, \\
s_{i} & =s_{i+12} \text { for all nonnegative integers } i, \text { and } \\
s_{0} & >s_{1}>s_{2}>0
\end{aligned}
$$

Find the three numbers s_{0}, s_{1}, and s_{2}.
Problem 5/37. In the octahedron shown on the right, the base and top faces are equilateral triangles with sides measuring 9 and 5 units, and the lateral edges are all of length 6 units. Determine the height of the octahedron; i.e., the distance between the base and the top face.

