International Mathematical Talent Search – Round 37

Problem 1/37. Determine the smallest five-digit positive integer N such that 2N is also a five-digit integer and all ten digits from 0 to 9 are found in N and 2N.

Problem 2/37. It was recently shown that $2^{2^{2^4}} + 1$ is not a prime number. Find the four rightmost digits of this number.

Problem 3/37. Determine the integers a, b, c, d, and e for which

$$(x^2 + ax + b)(x^3 + cx^2 + dx + e) = x^5 - 9x - 27.$$

Problem 4/37. A sequence of real numbers s_0, s_1, s_2, \ldots has the property that

 $s_i s_j = s_{i+j} + s_{i-j}$ for all nonnegative integers i and j with $i \ge j$, $s_i = s_{i+12}$ for all nonnegative integers i, and $s_0 > s_1 > s_2 > 0$.

Find the three numbers s_0 , s_1 , and s_2 .

Problem 5/37. In the octahedron shown on the right, the base and top faces are equilateral triangles with sides measuring 9 and 5 units, and the lateral edges are all of length 6 units. Determine the height of the octahedron; i.e., the distance between the base and the top face.

