International Mathematical Talent Search - Round 35

Problem 1/35. We define the repetition number of a positive integer n to be the number of distinct digits of n when written in base 10 . Prove that each positive integer has a multiple which has a repetition number less than or equal to 2 .

Problem 2/35. Let a be a positive real number, n a positive integer, and define the power tower $a \uparrow n$ recursively with $a \uparrow 1=a, a \uparrow(i+1)=a^{a \uparrow i}$ for $i=1,2, \ldots$. For example, we have $4 \uparrow 3=4^{4^{4}}=4^{256}$, a number which has 155 digits. For each positive integer k, let x_{k} denote the unique positive real number solution of the equation $x \uparrow k=10 \uparrow(k+1)$. Which is larger: x_{42} or x_{43} ?

Problem 3/35. Suppose that the 32 computers in a certain network are numbered with the 5 -bit integers $00000,00001, \ldots, 11111$ (bit is short for binary digit). Suppose that there is a one-way connection from computer A to computer B if and only if A and B share four of their bits with the remaining bit being a 0 at A and a 1 at B. (For example, 10101 can send messages to 11101 and to 10111.) We say that a computer is at level k in the network if it has exactly k 's in its label ($k=0,1,2, \ldots 5$). Suppose further that we know that 12 computers, three at each of the levels 1, 2, 3, and 4 , are malfunctioning, but we do not know which ones. Can we still be sure that we can send a message from 00000 to 11111 ?

Problem 4/35. We say that a triangle in the coordinate plane is integral if its three vertices have integer coordinates and if its three sides have integer lengths.
(a) Find an integral triangle with a perimeter of 42.
(b) Is there an integral triangle with a perimeter of 43 ?

Problem 5/35. We say that a finite set of points is well scattered on the surface of a sphere if every open hemisphere (half the surface of the sphere without its boundary) contains at least one of the points. While $\{(1,0,0)$, $(0,1,0),(0,0,1)\}$ is not well scattered on the unit sphere (the sphere of radius 1 centered at the origin), but if you add the correct point P, it becomes well scattered. Find, with proof, all possible points P that would make the set well scattered.

