## International Mathematical Talent Search - Round 34

Problem 1/34. The number $N$ consists of 1999 digits such that if each pair of consecutive digits in $N$ were viewed as a two-digit number, then that number would either be a multiple of 17 or a multiple of 23 . The sum of the digits of $N$ is 9599 . Determine the rightmost ten digits of $N$.

Problem 2/34. Let $\mathcal{C}$ be the set of non-negative integers which can be expressed as $1999 s+2000 t$ where $s$ and $t$ are also non-negative integers.
(a) Show that $3,994,001$ is not in $\mathcal{C}$.
(b) Show that if $0 \leq n \leq 3,994,001$ and $n$ is an integer not in $\mathcal{C}$, then 3, 994, $001-n$ is in $\mathcal{C}$.

Problem 3/34. The figure on the right shows the map of Squareville, where each city block is of the same length. Two friends, Alexandra and Brianna, live at corners marked by $A$ and $B$, respectively. They start walking toward each other's house, leaving at the same time, walking with the same speed, and independently choosing a path to the other's house with uniform dis-
 tribution out of all possible minimum-distance paths (that is, all minimum-distance paths are equally likely). What is the probability that they will meet?

Problem 4/34. In $\triangle P Q R, P Q=8, Q R=13$, and $R P=15$. Prove that there is a point $S$ on the line segment $\overline{P R}$, but not at its endpoints, such that $P S$ and $Q S$ are also integers.


Problem 5/34. In $\triangle A B C, A C>B C$, $C M$ is the median, and $C H$ is the altitude emanating from $C$, as shown in the figure on the right. Determine the measure of $\angle M C H$, if $\angle A C M$ and $\angle B C H$ each have measure $17^{\circ}$.


