International Mathematical Talent Search - Round 33

Problem 1/33. The digits of the three-digit integers a, b, and c are the nine non-zero digits $1,2,3, \ldots, 9$, each of them appearing exactly once. Given that the ratio $a: b: c$ is $1: 3: 5$, determine a, b, and c.

Problem 2/33. Let $N=111 \ldots 1222 \ldots 2$, where there are 1999 digits of 1 followed by 1999 digits of 2 . Express N as the product of four integers, each of them greater than 1 .

Problem 3/33. Triangle $A B C$ has angle A measuring 30°, angle B measuring 60°, and angle C measuring 90°. Show four different ways to divide triangle $A B C$ into four triangles, each similar to triangle $A B C$ but with one quarter of the area. Prove that the angles and sizes of the smaller triangles are correct.

Problem 4/33. There are 8436 steel balls, each with radius 1 centimeter, stacked in a tetrahedral pile, with one ball on top, 3 balls in the second layer, 6 in the third layer, 10 in the fourth, and so on. Determine the height ot the pile in centimeters.

Problem 5/33. In a convex pentagon $A B C D E$ the sides have lengths $1,2,3,4$, and 5 , though not necessarily in that order. Let F, G, H, and I be the midpoints of sides $A B, B C, C D$, and $D E$, respectively. Let X be the midpoint of segment $F H$, and Y be the midpoint of segment $G I$. The length of segment $X Y$ is an integer. Find all possible values of the length of side $A E$.

