International Mathematical Talent Search - Round 32

Problem 1/32. Exhibit a 13-digit integer N that is an integer multiple of 2^{13} and whose digits consist of only 8 s and 9 s .

Problem 2/32. For a nonzero integer i, the exponent of 2 in the prime factorization of i is called $\operatorname{ord}_{2}(i)$. For example, $\operatorname{ord}_{2}(9)=0$ since 9 is odd, and ord $_{2}(28)=2$ since $28=2^{2} \times 7$. The numbers $3^{n}-1$ for $n=1,2,3, \ldots$ are all even, so $\operatorname{ord}_{2}\left(3^{n}-1\right) \geq 1$ for $n>0$.
a) For which positive integers n is $\operatorname{ord}_{2}\left(3^{n}-1\right)=1$?
b) For which positive integers n is $\operatorname{ord}_{2}\left(3^{n}-1\right)=2$?
c) For which positive integers n is $\operatorname{ord}_{2}\left(3^{n}-1\right)=3$?

Prove your answers.
Problem 3/32. Let f be a polynomial of degree 98, such that $f(k)=\frac{1}{k}$ for $k=1,2,3, \ldots, 99$. Determine $f(100)$.

Problem 4/32. Let A consist of 16 elements of the set $\{1,2,3, \ldots, 106\}$, so that no two elements of A differ by $6,9,12,15,18$, or 21 . Prove that two of the elements of A must differ by 3 .

Problem 5/32. In $\triangle A B C$, let D, E, and F be the midpoints of the sides of the triangle, and let P, Q, and R be the midpoints of the corresponding medians, $\overline{A D}, \overline{B E}$, and $\overline{C F}$, respectively, as shown in the figure below. Prove that the value of

$$
\frac{A Q^{2}+A R^{2}+B P^{2}+B R^{2}+C P^{2}+C Q^{2}}{A B^{2}+B C^{2}+C A^{2}}
$$

does not depend on the shape of $\triangle A B C$ and find that value.

