International Mathematical Talent Search - Round 31

Problem 1/31. Determine the three leftmost digits of the number

$$
1^{1}+2^{2}+3^{3}+\cdots+999^{999}+1000^{1000}
$$

Problem $\mathbf{2 / 3 1}$. There are infinitely many ordered pairs (m, n) of positive integers for which the sum

$$
m+(m+1)+(m+2)+\cdots+(n-1)+n
$$

is equal to the product $m n$. The four pairs with the smallest values of m are $(1,1),(3,6),(15,35)$, and $(85,204)$. Find three more (m, n) pairs.

Problem 3/31. The integers from 1 to 9 can be arranged into a 3×3 array so that the sum of the numbers in every row, column, and diagonal is a multiple of 9 .
(a) Prove that the number in the center of the array must be a multiple of 3 .
(b) Give an example of such an array with 6 in the center.

Problem 4/31. Prove that if $0<x<\pi / 2$, then

$$
\sec ^{6} x+\csc ^{6} x+\left(\sec ^{6} x\right)\left(\csc ^{6} x\right) \geq 80
$$

Problem 5/31. In the figure shown on the right, O is the center of the circle, $O K$ and $O A$ are perpendicular to one another, M is the midpoint of $O K, B N$ is parallel to $O K$, and $\angle A M N=\angle N M O$.

Determine the measure of $\angle A B N$ in degrees.

