International Mathematical Talent Search - Round 27

Problem 1/27. Are there integers M, N, K, such that $M+N=K$ and
(i) each of them contains each of the seven digits $1,2,3, \ldots, 7$ exactly once?
(ii) each of them contains each of the nine digits $1,2,3, \ldots, 9$ exactly once?

Problem 2/27. Suppose that $R(n)$ counts the number of representations of the positive integer n as the sum of the squares of four non-negative integers, where we consider two representations equivalent if they differ only in the order of the summands. (For example, $R(7)=1$ since $2^{2}+1^{2}+1^{2}+1^{2}$ is the only representation of 7 up to ordering.)
Prove that if k is a positive integer, then $R\left(2^{k}\right)+R\left(2^{k+1}\right)=3$.
Problem 3/27. Assume that $f(1)=0$, and that for all integers m and n,

$$
f(m+n)=f(m)+f(n)+3(4 m n-1) .
$$

Determine $f(19)$.
Problem 4/27. In the rectangular coordinate plane, $A B C D$ is a square, and $(31,27),(42,43),(60,27)$, and $(46,16)$ are points on its sides, $A B, B C, C D$, and $D A$, respectively. Determine the area of $A B C D$.

Problem 5/27. Is it possible to construct in the plane the midpoint of a given segment using compasses alone (i.e., without using a straight edge, except for drawing the segment)?

