International Mathematical Talent Search - Round 26

Problem 1/26. Assume that x, y, and z are positive real numbers that satisfy the equations given on the right.

$$
\begin{aligned}
& x+y+x y=8 \\
& y+z+y z=15, \\
& z+x+z x=35
\end{aligned}
$$

Determine the value of $x+y+z+x y z$.
Problem 2/26. Determine the number of non-similar regular polygons each of whose interior angles measures an integral number of degrees.

Problem 3/26. Substitute different digits $(0,1,2, \ldots, 9)$ for different letters in the alphametics on the right, so that the corresponding addition is correct, and the result-

	S	H	O	W
		M	E	
+		T	H	E
M	O	N	E	Y

Problem 4/26. Prove that if $a \geq b \geq c>0$, then

$$
2 a+3 b+5 c-\frac{8}{3}(\sqrt{a b}+\sqrt{b c}+\sqrt{c a}) \leq \frac{1}{3}\left(\frac{a^{2}}{b}+\frac{b^{2}}{c}+4 \frac{c^{2}}{a}\right) .
$$

Problem 5/26. Let $A B C D$ be a convex quadrilateral inscribed in a circle, let M be the intersection point of the diagonals of $A B C D$, and let E, F, G, and H be the feet of the perpendiculars from M to the sides of $A B C D$, as shown in the figure on the right. Determine (with proof) the center of the circle inscribable in quadrilateral EFGH.

