International Mathematical Talent Search - Round 25

Problem 1/25. Assume that we have 12 rods, each 13 units long. They are to be cut into pieces measuring 3,4 , and 5 units, so that the resulting pieces can be assembled into 13 triangles of sides 3,4 , and 5 units. How should the rods be cut?

Problem 2/25. Let $f(x)$ be a polynomial with integer coefficients, and assume that $f(0)=0$ and $f(1)=2$. Prove that $f(7)$ is not a perfect square.

Problem 3/25. One can show that for every quadratic equation $(x-p)(x-$ $q)=0$ there exist constants a, b, and c, with $c \neq 0$, such that the equation $(x-a)(b-x)=c$ is equivalent to the original equation, and the faulty reasoning "either $x-a$ or $b-x$ must equal to c " yields the correct answers " $x=p$ or $x=q$ ".

Determine constants a, b, and c, with $c \neq 0$, so that the equation $(x-19)(x-$ 97) $=0$ can be "solved" in such manner.

Problem 4/25. Assume that $\triangle A B C$ is a scalene triangle, with $A B$ as its longest side. Extend $A B$ to the point D so that B is between A and D on the line segment $A D$ and $B D=B C$. Prove that $\angle A C D$ is obtuse.

Problem 5/25. As shown in the figure on the right, $P A B C D$ is a pyramid, whose base, $A B C D$, is a rhombus with $\angle D A B=60^{\circ}$. Assume that $P C^{2}=$ $P B^{2}+P D^{2}$. Prove that $P A=A B$.

