International Mathematical Talent Search - Round 24

Problem 1/24. The lattice points of the first quadrant are numbered as shown in the diagram on the right. Thus, for example, the 19th lattice point is $(2,3)$, while the 97 th lattice point is $(8,5)$. Determine, with proof, the 1997th lattice point in this scheme.

| \circ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 22 | 35 | \circ | \circ | \circ | \circ | \circ | \circ |
| 21 | 23 | 34 | \circ | \circ | \circ | \circ | \circ |
| 11 | 20 | 24 | 33 | \circ | \circ | \circ | \circ |
| 10 | 12 | 19 | 25 | 32 | \circ | \circ | \circ |
| 4 | 9 | 13 | 18 | 26 | 31 | \circ | \circ |
| 3 | 5 | 8 | 14 | 17 | 27 | 30 | \circ |
| 1 | 2 | 6 | 7 | 15 | 16 | 28 | 29 |

Problem 2/24. Let $N_{k}=131313 \ldots 131$ be the $(2 k+1)$-digit number (in base 10), formed from $k+1$ copies of 1 and k copies of 3 . Prove that N_{k} is not divisible by 31 for any value of $k=1,2,3, \ldots$.

Problem 3/24. In $\triangle A B C$, let $A B=52, B C=64, C A=70$, and assume that P and Q are points chosen on sides $A B$ and $A C$, respectively, so that $\triangle A P Q$ and quadrilateral $P B C Q$ have the same area and the same perimeter. Determine the square of the length of the segment $P Q$.

Problem 4/24. Determine the positive integers $x<y<z$ for which

$$
\frac{1}{x}-\frac{1}{x y}-\frac{1}{x y z}=\frac{19}{97}
$$

Problem 5/24. Let P be a convex planar polygon with n vertices, and from each vertex of P construct perpendiculars to the $n-2$ sides (or extensions thereof) of P not meeting at that vertex. Prove that either one of these perpendiculars is completely in the interior of P or it is a side of P.

