International Mathematical Talent Search - Round 2

Problem 1/2. What is the smallest integer multiple of 9997, other than 9997 itself, which contains only odd digits?
Problem 2/2. Show that every triangle can be dissected into nine convex nondegenerate pentagons.
Problem 3/2. Prove that if x, y, and z are pairwise relatively prime positive integers, and if $\frac{1}{x}+\frac{1}{y}=\frac{1}{z}$, then $x+y, x-z$, and $y-z$ are perfect squares of integers.
Problem 4/2. Let a, b, c, and d be the areas of the triangular faces of a tetrahedron, and let h_{a}, h_{b}, h_{c}, and h_{d} be the corresponding altitudes of the tetrahedron. If V denotes the volume of the tetrahedron, prove that

$$
(a+b+c+d)\left(h_{a}+h_{b}+h_{c}+h_{d}\right) \geq 48 V
$$

Problem 5/2. Prove that there are infinitely many positive integers n such that the $n \times n \times n$ box can not be filled completely with $2 \times 2 \times 2$ and $3 \times 3 \times 3$ solid cubes.

