International Mathematical Talent Search - Round 18

Problem 1/18. Determine the minimum length of the interval $[a, b]$ such that $a \leq x+y \leq b$ for all real numbers $x \geq y \geq 0$ for which $19 x+95 y=1995$.
Problem 2/18. For a positive integer $n \geq 2$, let $P(n)$ denote the product of the positive integer divisors (including 1 and n) of n. Find the smallest n for which $P(n)=n^{10}$.
Problem 3/18. The graph shown on the right has 10 vertices, 15 edges, and each vertex is of order 3 (i.e., at each vertex 3 edges meet). Some of the edges are labeled $1,2,3,4,5$ as shown. Prove that it is possible to label the remaining edges $6,7,8$, $\ldots, 15$ so that at each vertex the sum
 of the labels on the edges meeting at that vertex is the same.
Problem 4/18. Let a, b, c, d be distinct real numbers such that

$$
a+b+c+d=3 \quad \text { and } \quad a^{2}+b^{2}+c^{2}+d^{2}=45 .
$$

Find the value of the expression

$$
\begin{aligned}
& \frac{a^{5}}{(a-b)(a-c)(a-d)}+\frac{b^{5}}{(b-a)(b-c)(b-d)} \\
& \quad+\frac{c^{5}}{(c-a)(c-b)(c-d)}+\frac{d^{5}}{(d-a)(d-b)(d-c)} .
\end{aligned}
$$

Problem 5/18. Let a and b be two lines in the plane, and let C be a point as shown in the figure on the right. Using only a compass and an unmarked straight edge, construct an isosceles right triangle $A B C$, so that
 A is on line a, B is on line b, and $A B$ is the hypotenuse of $\triangle A B C$.

