International Mathematical Talent Search - Round 15

Problem 1/15. Is it possible to pair off the positive integers $1,2,3, \ldots, 50$ in such a manner that the sum of each pair of numbers is a different prime number?

Problem 2/15. Substitute different digits $(0,1,2, \ldots, 9)$ for different letters in the following alphametics to ensure that the corresponding additions are correct. (The two problems are independent of one another.)
$\left.\begin{array}{rcccccc}H & A & R & R & I & E & T \\ & M & A & R & R & I & E\end{array}\right]$

	D	I	A	N	A
			A	N	D
	S	A	R	A	H
+			A	R	E
R	E	B	E	L	S

Problem 3/15. Two pyramids share a seven-sided common base, with vertices labeled as $A_{1}, A_{2}, A_{3}, \ldots, A_{7}$, but they have different apexes, B and C. No three of these nine points are colinear. Each of the 14 edges $B A_{i}$ and $C A_{i}(i=1,2, \ldots, 7)$, the 14 diagonals of the common base, and the segment $B C$ are colored either red or blue. Prove that there are three segments among them, all of the same color, that form a triangle.
Problem 4/15. Suppose that for positive integers a, b, c and x, y, z, the equations $a^{2}+b^{2}=c^{2}$ and $x^{2}+y^{2}=z^{2}$ are satisfied. Prove that

$$
(a+x)^{2}+(b+y)^{2} \leq(c+z)^{2},
$$

and determine when equality holds.
Problem 5/15. Let C_{1} and C_{2} be two circles intersecting at the points A and B, and let C_{0} be a circle through A, with center at B. Determine, with proof, conditions under which the common chord of C_{0} and C_{1} is tangent to C_{2} ?

