Problem 1/1. For every positive integer n, form the number n/s(n), where s(n) is the sum of the digits of n in base 10. Determine the minimum value of n/s(n) in each of the following cases:

(i) $10 \le n \le 99$ (ii) $100 \le n \le 999$ (iii) $1000 \le n \le 9999$ (iv) $10000 \le n \le 99999$

Problem 2/1. Find all pairs of integers, n and k, 2 < k < n, such that the binomial coefficients

$$\binom{n}{k-1}$$
, $\binom{n}{k}$, $\binom{n}{k+1}$

form an increasing arithmetic series.

Problem 3/1. On an 8×8 board we place *n* dominoes, each covering two adjacent squares, so that no more dominoes can be placed on the remaining squares. What is the smallest value of *n* for which the above statement is true?

Problem 4/1. Show that an arbitrary acute triangle can be dissected by straight line segments into three parts in three different ways so that each part has a line of symmetry.

Problem 5/1. Show that it is possible to dissect an arbitrary tetrahedron into six parts by planes or portions thereof so that each of the parts has a plane of symmetry.