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Part A

A1 Let x be a real number such that (x−2)(x+2) = 2021. Determine the value of (x−1)(x+1).

Solution: Expanding (x− 2)(x+ 2) = 2021 yields x2 − 4 = 2021. Hence, x2 = 2025. Therefore,
(x− 1)(x+ 1) = x2 − 1 = 2025− 1 = 2024.

Answer: 2024 .

A2. Julia had eaten a box of candies in 4 days. On the first day she ate 1
5 of the total number

of candies. On the second day she ate half of what was left after the first day. On the third
day she ate half of what was left after the second day. What portion of the candies initially
contained in the box did she eat on the fourth day? Express your answer as an irreducible
fraction.

Solution 1: We organize the information in the form of a table.

day # 1 2 3 4

ate of the total 1
5

1
2 × 4

5 = 2
5

1
2 × 2

5 = 1
5

1
5

left of the total 1− 1
5 = 4

5
4
5 − 2

5 = 2
5

2
5 − 1

5 = 1
5 0

Solution 2: Assume that box contains 5n (for some n ≥ 1) candies and count the numbers of candies
(instead of fractions of the box).

day # 1 2 3 4

ate n 1
2 × 4n = 2n 1

2 × 2n = n n

left 5n− n = 4n 4n− 2n = 2n 2n− n = n 0

The portion she ate on the 4th day is n
5n = 1

5 .

Answer: 1/5 .
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A3 Two circles, each of radius 5 units long, are drawn in the coordinate plane such that their
centres A and C have coordinates (0, 0) and (8, 0) respectively. How many points where both
coordinates are integers are within the intersection of these circles (including its boundary)?

x

y

0

A

8

C

Solution: Let M be the midpoint of AC and the circumferences of the circles intersect at points B and
D. Then AM=4 units and AMB is a right triangle with AB=5.

x

y

B

M

0

A

8

C

D

Nowing the 3− 4− 5 Pythagorean triple, MB=3 units. Therefore, there are 7 lattice points on BD
(including the endpoints). There are two more points on the boundary of the intersection: they have
coordinates (3, 0) and (5, 0). The total is 9 lattice points.

Answer: 9 .

A4. Marija travels to school by a combination of walking and skateboarding. She can get there in
38 minutes if she walks for 25 minutes and skateboards for 13, or in 31 minutes if she walks
for 11 and skateboards for 20. How long (in minutes) would it take her to walk to school?

Solution 1: Denoting her walking speed by w, skateboarding speed by s, and distance to school by D,
we have

D = 25w + 13s, and D = 11w + 20s.

Subtracting these gives 7s = 14w, and so D = 51w. Hence, it will take 51 minutes.
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Solution 2: Decreasing the skateboarding time by 7 minutes increases the walking time by 14 = 2× 7
minutes and the total time taken by 7 minutes. So decreasing the skateboarding time by 13 minutes will
increase the walking time by 26 = 2× 13 minutes and the total time by 13 minutes, from 38 to 51.

Answer: 51 .

Part B

B1. A bag contains two regularly shaped (cubic) dice which are identical in size. One die has
the number 2 on every side. The other die has the numbers 2 on three sides and number
4 on each side opposite to one that has number 2. You pick up a die and look at one side
of it, observing the number 2. What is the probability the opposite side of the die has the
number 2 as well? Express your answer as an irreducible fraction.

Solution: There are 9 different sides we could be looking at: either side of the first dice, or 3 sides of the
second dice. In 6 of those possibilities (i.e. for each side of the first dice), the other side is also a 2, so the
probability is 6

9 = 2
3 .

Answer: 2/3 .

B2. When the product

(2021x2021 + 2020x2020 + · · ·+ 3x3 + 2x2 + x)(x2021 − x2020 + · · ·+ x3 − x2 + x− 1)

is expanded and simplified, what is the coefficient of x2021?

Solution: Expanding terms that yield x2021 we get

(2021x2021)(−1) + (2020x2020)(x) + (2019x2019)(−x2) + · · · =
= −2021x2021 + 2020x2021 − 2019x2021 + · · ·
= (−2021 + [2020− 2019] + [2018− 2017] + · · ·+ [4− 3] + [2− 1])x2021

= (−2021 + 1010× 1)x2021

= −1011x2021

∴ The coefficient of x2021 is −1011.

Answer: −1011 .
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B3. Two right triangles ∆AXY and ∆BXY have a common hypotenuse XY and side lengths
(in units) AX = 5, AY = 10, and BY = 2. Sides AY and BX intersect at P . Determine
the area (in square units) of ∆PXY .

X Y

A

B
P

5

2

Solution 1:

X Y

A

B
P

5

2x

y

z

From the right triangle AXY we find XY 2 = XA2 +AY 2 = 125. Then from the right triangle BXY ,
BX =

√
XY 2 −BY 2 = 11.

Labelling by x, y and z the area of the triangles PXY , AXP and BPY respectively (see the diagram),
we get

x+ y =
1

2
(5)(10) = 25

x+ z =
1

2
(2)(11) = 11

As ∆PAX and ∆PBY are right angled and ∠APX = ∠BPY , the triangles are similar. Then, since
BY
AX = 2

5 we can deduce that z =
(
2
5

)2
y = 4

25y. Substituting z = 4
25y into the system of equations and

solving it gives x = 25/3 and y = 50/3. Thus, the desired area is 25
3 square units.

Answer: 25/3 .

Solution 2:

X Y

A

B
P

5

2

2u

5v

5u

2v
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From the right triangle AXY we find XY 2 = XA2 +AY 2 = 125. Then from the right triangle BXY ,
BX =

√
XY 2 −BY 2 = 11.

As ∆PAX and ∆PBY are right angled and ∠APX = ∠BPY , the triangles are similar. We have
AP : PB = XP : PY = 5 : 2, so AP = 5u, PB = 2u, XP = 5v, PY = 2v, for some u and v. Thus,

BX = 2u+ 5v = 11

AY = 5u+ 2v = 10

Solving this system we obtain u = 4
3 and v = 5

3 . Thus, XP = 25
3 .

Therefore, the desired area is 1
2XP ·BY = 25

3 square units.

Answer: 25/3 .

B4. The equation sinx = x
2021π has exactly n solutions. Find n.

Solution: Notice that x = 0 is a solution. As well, both functions are odd, so due to the symmetry if x∗

is a solution then −x∗ is also a solution.

x. . .

y

−3π −2π −π π 2π 3π 2020π 2021π

(2021π, 1)

Since −1 ≤ sinx ≤ 1, all solutions are in the interval for which −1 ≤ x
2021π ≤ 1, that is [−2021π, 2021π].

The function y = sinx is 2π-periodic. There are 1010 periods and a half of a period on the segment
(0, 2021π]. There are 2 intersections of the line y = x

2021π and the sine on each period except the first one
(0, 2π], where we have only one intersection. There are also two intersections on the last half of the
period. Consequently, there are 1 + 2020 = 2021 solutions on (0, 2021π]. Similarly, there are 2021
solutions on [−2021π, 0). In total, there are n = 1 + 2× 2021 = 4043 solutions.

Answer: 4043 .
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Part C

C1.

a. Determine all points P (x, y) such that (0, 0), (1, 1), (1, 0) and P are vertices of a parallelo-
gram.

b. Two parallel lines intersect the (horizontal) parabola x = y2 at four distinct points: (0, 0),
(1, 1), (9, 3) and Q. Determine all possible coordinates of the point Q.

c. Two parallel lines intersect the parabola x = y2 at four distinct points: (0, 0), (1, 1), (a2, a)
and V . Here a ̸= 0,±1 is a real number. Determine all possible coordinates of the point V .
The answer should be expresed in term of a.

Solution:

a. There are three possibilities for P : (0, 1), (0,−1), (2, 1).

P (0, 1)

x

y

P (0,−1)

x

y

P (2, 1)

x

y

b. There are three possible pairs of parallel lines - the line through (0, 0) can go through (1, 1), or
(9, 3) or Q.

• The line through (0, 0) and (1, 1) is parallel to y = x− 6 through (9, 3). The solutions to
y + 6 = y2 give the y coordinates of the intersection points as x = y + 6 and x = y2. Hence at
y = 3 or y = −2, so the y coordinate of Q here is −2 and then x = 4.

Q(4,−2)

x

y

• The line through (0, 0) and (9, 3) is parallel to y = x+2
3 through (1, 1). The solutions to

3y − 2 = y2, are y = 1 or y = 2, so the y coordinate of Q here is 2 and x = 4.
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Q(4, 2)

x

y

• The line through (1, 1) and (9, 3) is parallel to y = x
4 through (0, 0). The non-zero solution to

4y = y2 is y = 4, so the y coordinate of Q here is 4 and x = 16.

Q(16, 4)

x

y

Thus, Q could be at (4,−2), (4, 2), (16, 4).

c. There are three possible pairs of parallel lines - the line through (0, 0) can go through (1, 1), or
(a2, a) or V .

• The line through (0, 0) and (1, 1) is parallel to y = x+ a− a2 through (a2, a). The solutions to
y + a(a− 1) = y2 give the y coordinates of the intersection points, hence at y = a or y = 1− a,
so the y coordinate of V here is 1− a and then x = (1− a)2.

• The line through (0, 0) and (a2, a) is parallel to y = x+a−1
a through (1, 1). The solutions to

ay+1− a = y2, are y = 1 or y = a− 1, so the y coordinate of V here is a− 1 and x = (a− 1)2.

• The line through (1, 1) and (a2, a) is parallel to y = x
a+1 through (0, 0). The non-zero solution

to (a+ 1)y = y2 is y = a+ 1, so the y coordinate of V here is a+ 1 and x = (a+ 1)2.

Thus, V could be at ((a− 1)2,±(a− 1) and ((a+ 1)2, a+ 1)).

A variation of the solution for C1(c): There are three possible pairs of parallel lines - the line
through (0, 0) can go through (1, 1), or (a2, a) or V .

• The line through (0, 0) and (1, 1) has slope 1. A line through (a2, a) parallel to it has the
equation y−a

x−a2
= 1. Substitute x = y2 in order to find the points of intersection of the line with

the parabola. We have y−a
y2−a2

= 1 or y−a
(y−a)(y+a) = 1. To exclude the original point we assume

y ̸= a. Thus, we can cancel y − a and get y + a = 1, so y = 1− a. Then x = (1− a)2.
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• The line through (0, 0) and (a2, a) has slope 1
a . A line through (1, 1) parallel to it has the

equation y−1
x−1 = 1

a . Substitute x = y2 in order to find the points of intersection of the line with

the parabola. We have y−1
y2−1

= 1
a or y−1

(y−1)(y+1) =
1
a . To exclude the original point we assume

y ̸= 1. Thus, we can cancel y − 1 and get y + 1 = a, so y = a− 1. Then x = (a− 1)2.

• The line through (1, 1) and (a2, a), a ̸= ±1 has slope a−1
a2−1

= 1
a+1 . A line through (0, 0) parallel

to it has the equation y
x = 1

a+1 . Substitute x = y2 in order to find the points of intersection of

the line with the parabola. We have y
y2

= 1
a+1 . To exclude the original point we assume y ̸= 0.

Thus, we can cancel y and get y = a+ 1. Then x = (a+ 1)2.

Thus, V could be at ((a− 1)2,±(a− 1) and ((a+ 1)2, a+ 1). Finally, we should ensure that none of
the points (0, 0), (1, 1), (a2, a) and V coincide. The problem poses the restriction a ̸= 0,±1. In
addition, we find that for a = 1

2 , ((a− 1)2,−(a− 1)) = (a2, a) = (14 ,−
1
2), and for a = 2,

((a− 1)2, (a− 1)) = (1, 1). Therefore the answer is: for a ̸= 0,±1, 12 , 2 point V could be at
((a− 1)2,±(a− 1)) and ((a+ 1)2, a+ 1); for a = 1

2 point V could be at (94 ,
3
2) or (

1
4 ,−

1
2); for a = 2

point V could be at (1,−1) or (9, 3). We also note that for a = −1, point V could be at (4,−2) or
(4, 2).

C2. Let m,n ≥ 2 be positive integers. Each entry of an m×n grid contains a real number in the
range [−1, 1], i.e. between −1 and 1 inclusively. The grid also has the property that the sum
of the four entries in every 2× 2 subgrid is equal to 0. (A 2× 2 subgrid is the intersection
of two adjacent rows and two adjacent columns of the original grid.)
Let S be the sum of all of the entries in the grid.

a. Suppose m = 6 and n = 6. Explain why S = 0.

b. Suppose m = 3 and n = 3. If the elements of the grid are

a b c

d e f

g h i

,

show that S + e = a+ i = c+ g.

c. Suppose m = 7 and n = 7. Determine the maximum possible value of S.

Solution:

a. A 6× 6 grid can be partitioned into 2× 2 subgrids, because there is an even number of squares
along each side of the grid. Since the sum of the entries of each of the subgrids is 0, the sum of all
of the entries of the grid is 0. Therefore, S = 0.

b. We have S = a+ b+ c+ d+ e+ f + g + h+ i and the sum of the four entries in every 2× 2 subgrid
is equal to 0. Thus,
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S + e = (b+ c+ e+ f) + (d+ e+ g + h) + a+ i = 0 + 0 + a+ i = a+ i.

S + e = (a+ b+ d+ e) + (e+ f + h+ i) + c+ g = 0 + 0 + c+ g = c+ g.

c. The sum of all of the entries of the grid can be determined more simply with the following fact.

Fact: In the following 3× 3 grid, where a+ b+ d+ e = e+ f + h+ i = 0,

a b c

d e f

0 h i

the sum of the entries is S = c− e. The proof is similar to (b), setting g = 0:

S + e = (a+ b+ d+ e) + (e+ f + h+ i) + c = 0 + 0 + c = c.

We can partition the 7× 7 grid as follows:

· · · · · · · · · · · · a4 b4 c4
· · · · · · · · · · · · d4 e4 f4
· · · · · · a3 b3 c3 g4 h4
· · · · · · d3 e3 f3 · · · · · ·
a2 b2 c2 g3 h3 · · · · · ·
d2 e2 f2 · · · · · · · · · · · ·
c1 g2 h2 · · · · · · · · · · · ·

The entries not labeled can be broken down into 2× 2 grids, so their sum is 0.

From (b) and the fact we used above, the sums of elements in the overlapping 3× 3 grids

a2 b2 c2
d2 e2 f2
c1 g2 h2

,

a3 b3 c3
d3 e3 f3
0 g3 h3

,

a4 b4 c4
d4 e4 f4
0 g4 h4

are
c1 − e2 + c2, c3 − e3 and c4 − e4 respectively.

Hence, the sum of all of the entries of the 7× 7 grid is

c1 − e2 + c2 − e3 + c3 − e4 + c4.

An alternative way to show that S in a 7× 7 grid can be expressed as the alternating sum of the
diagonal elements is as follows.
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a

b

c

d

e

f

g The 7 × 7 square is covered by two 3 × 3 squares (with
diagonal elements a, b, c and e, f, g respectively) and by
two 4 × 4 squares (overlapping in one element d). By
part (b), the 3 × 3 squares have element sums of a−b+c
and e − f + g respectively. The 4 × 4 squares can each
be partitioned into four 2 × 2 squares and thus each has
element sum 0. Thus we get

S = a−b+c+e−f+g+0+0−d = a−b+c−d+e−f+g.

Since each entry lies between −1 and 1 inclusively, this sum is at most 7. Hence, the sum of all the
entries is at most 7. This maximum sum can be obtained as follows:

1 0 1 0 1 0 1

0 −1 0 −1 0 −1 0

1 0 1 0 1 0 1

0 −1 0 −1 0 −1 0

1 0 1 0 1 0 1

0 −1 0 −1 0 −1 0

1 0 1 0 1 0 1

or
1 −1 1 −1 1 −1 1

1 −1 1 −1 1 −1 1

1 −1 1 −1 1 −1 1

1 −1 1 −1 1 −1 1

1 −1 1 −1 1 −1 1

1 −1 1 −1 1 −1 1

1 −1 1 −1 1 −1 1

Answer: 7 .
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C3. Xintong plays a game of turning one six-digit number into another. The numbers can have
leading zeros, but cannot go over 6 digits or below 0. He can only make the following moves,
any number of times in any order:

• R: rotate the last digit to the start, for example, 092347 → 709234, or
• A: add 1001 to the number, for example, 709234 → 710235, or
• S: subtract 1001 from the number, for example, 709234 → 708233.

a. Show that it is possible to turn 202122 into 313233.

b. Show that turning 999999 into 000000 can be done in eight moves.

c. Show that any multiple of 11 remains a multiple of 11 after any sequence of moves.

d. Show that it is impossible to turn 112233 into 000000.

Solution:

a. We need to add one to every digit, so any combination of three additions to distinct digits and six
rotations will work. For example, it can be reached by A,R,A,R,A,R,R,R,R.

b. This can be done through moves: S,R,A,R,R,A,R, S.

c. Since 1001 is divisible by 11, adding (or subtracting) 1001 to a number divisible by 11 will result in
a number divisible by 11. If n has digits a1a2a3a4a5a6, then n is divisible by 11 if and only if
a1 − a2 + a3 − a4 + a5 − a6 is. Rotating makes the sum negative, so divisibility by 11 is preserved.

Alternative proof of the implication 11|n → 11|R(n): Let n = 105a+ 104b+ 103c+ 102d+ 10e+ f .
Then after rotation we have R(n) = 105f + 104a+ 103b+ 102c+ 10d+ e. Consider the sum

n+R(n) = 11 · 104a+ 11 · 103b+ 11 · 102c+ 11 · 10d+ 11e+ 100001f.

Note that 100001 is divisible by 11. Since both the sum n+R(n) and n are divisible by 11, we
conclude that R(n) is divisible by 11.

d. We can show that (non-)divisibility by 7, or 11, or 13 is an invariant. If n is not divisible by 7 or 11
or 13, then the same is true for n± 1001, since 7 · 11 · 13 = 1001.

Now, let n = abcdef and R(n) = fabcde. Then

R(n) =
n− f

10
+ f × 105.

Therefore 10R(n) = n− f + f × 106.

Since 106 = 999× 1001 + 1, we write 106 ≡ 1(mod 1001). So, we conclude

10R(n) ≡ n(mod 1001).

In other words, n and 10R(n) are either both divisible by 1001 or give the same remainder when
divided by 1001. So, if n is not divisible by 1001 then R(n) must be not divisible by 1001.
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We observe that 112233 is not divisible by 7 and thus not divisible by 1001, while 000000 is
divisible by 1001. Thus, the transfer of 112233 to 000000 by a sequence of R, S and A is impossible.

Alternative solution for C3(d): First, observe that we can turn 112233 into 000000 if and only if we
can turn 000000 into 112233. This is because each move can be inverted: the inverse of A is S, and
the inverse of R is five consecutive R moves.

Next, let T be the set of all numbers of the form abcabc. Since T contains 000000 but not 112233, it
suffices to prove that if you start in T , then you must stay in T .

This is obvious for the R move: abcabc becomes cabcab.

For the other moves, observe that T is exactly the set of numbers between 0 and 999999 that are
multiples of 1001 (since abcabc = (abc)× 1001). Therefore A and S moves must take elements of T
to other elements of T .

C4. We call (F, c) a good pair if the following three conditions are satisfied:
(1) F (x) = a0 + a1x+ · · · amxm, (m ≥ 1) is a non-constant polynomial with integer coefficients.
(2) c is a real number that is not an integer.
(3) F (c) is an integer.
For example, both (6x, 13) and (1+x3, 51/3) are good pairs, but none of the following pairs (6x, 14),

(6x, 2), (x6 ,
1
3), (

x2

6 , 6) is good.

a. Let c = 1
2 . Give an example of F such that (F, c) is a good pair but (F, c+ 1) is not.

b. Let c =
√
2. Give an example of F such that both (F, c) and (F, c+ 1) are good pairs.

c. Show that for any good pair (F, c), if c is rational then there exists infinitely many non-zero
integers n such that (F, c+ n) is also a good pair.

d. Show that if (F, c+ n) is a good pair for every integer n, then c is rational.

Solution:

a. Let F (x) = 2x3 + x2 + x. Then F (12) = 1 and F (32) =
21
2 .

b. Let F (x) = (x2 − 2)((x− 1)2 − 2)). Then F (
√
2) = F (

√
2 + 1) = 0.

c. Let p and q be integers such that c = p
q is not an integer and let F (x) =

m∑
i=0

aix
i with integer

coefficients ai.

Then, F (c+ n)− F (c) =

m∑
i=0

ai
(
(c+ n)i − ci

)
.

For all 1 ≤ i ≤ m we have

(c+ n)i − ci =

i∑
j=0

(
i

j

)
cjni−j − ci = n

i−1∑
j=0

(
i

j

)
cjni−1−j = n

i−1∑
j=0

(
i

j

)(
p

q

)j

ni−1−j .
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If now we choose n = qk, k ≥ m− 1 then each of these differences is an integer. So there are
infinitely many choices for n.

d. Assume otherwise; that is, there is some irrational number c such that F (c+ n) is an integer for
every integer n. Take such a polynomial F of minimal degree. It is clear that F is not linear. We
can take a polynomial G(x) = F (x+ 1)− F (x), and now G(x) has degree one lower than F and is
also an integer on c+ n for all integers n, which is a contradiction.

Note that if c = p
q is rational then F (x) = qx makes the required good pairs.
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