Canadian Mathematical Society

2019 Canadian Open Mathematics Challenge

A competition of the Canadian Mathematical Society and supported by the Actuarial Profession.

 Expertise. Insight. Solutions.
 SOCIETY OF ACTUARIES

Student Identification

Please print clearly and complete all information below. Failure to print legibly or provide complete information may result in your exam being disqualified. This exam is not considered valid unless it is accompanied by your test supervisor's signed declaration.

1. Given/First Name: (Required)

2. Sur-/Last Name: (Required)

3. Are you currently registered in full-time attendance at an elementary, secondary or Cégep school, or home schooled and have been since at least September $15^{\text {th }}$ of this year? (Required for qualification)

Yes
4. Are you a Canadian Citizen or a Permanent Resident of Canada (regardless of your current address)? (Required for qualification) other:
\square
Yes
5. Date of Birth: (Required)

7. Gender: (Optional)\square Male

8. Email Address: (Optional)

9. Have you heard of actuary as a profession before participating in the Canadian Open Mathematics Challenge?
\square YesNo
10. Have you considered pursuing a career as an actuary?YesNoNot sure
11. Would you be interested in learning more about becoming an actuary? Yes \qquad No \qquad Not sure

Shawn's password to unlock his phone is four digits long, made up of two 5 s and two 3 s . How many different possibilities are there for Shawn's password?

Your solution:

Question A2 (4 points)

Triangle ABC has integer side lengths and perimeter 7. Determine all possible lengths of side AB .

Your solution:

If a and b are positive integers such that $a=0.6 b$ and $\operatorname{gcd}(a, b)=7$, find $a+b$.

Your solution:

> Your final answer:

Question A4 (4 points)

The equations $|x|^{2}-3|x|+2=0$ and $x^{4}-a x^{2}+4=0$ have the same roots. Determine the value of a.

Your solution:

Your final answer:

John walks from home to school with a constant speed, and his sister Joan bikes twice as fast. The distance between their home and school is 3 km . If Joan leaves home 15 minutes after John then they arrive to school at the same time. What is the walking speed (in km / h) of John?

Your solution:

Your final answer:

What is the largest integer n such that the quantity

$$
\frac{50!}{(5!)^{n}}
$$

is an integer?

Note: Here $k!=1 \times 2 \times 3 \times \cdots \times k$ is the product of all integers from 1 to k. For example, $4!=1 \times 2 \times 3 \times 4=24$.

Your solution:

> Your final answer:

In the diagram below circles C_{1} and C_{2} have centres O_{1} and O_{2}. The radii of the circles are respectively r_{1} and r_{2} with $r_{1}=3 r_{2}$. C_{2} is internally tangent to C_{1} at P. Chord $X Y$ of C_{1} has length 20, is tangent to C_{2} at Q and is parallel to $O_{2} O_{1}$. Determine the area of the shaded region: that is, the region inside C_{1} but not C_{2}.

Your solution:

Bob and Jane hold identical decks of twelve cards, three of each colour: red, green, yellow, and blue. Bob and Jane shuffle their decks and then take turns dealing one card at a time onto a pile, with Jane going first. Find the probability that Jane deals all her red cards before Bob deals any of his red cards.
Give your answer in the form of a fraction in lowest terms.

Your solution:

Your final answer:

The function f is defined on the natural numbers $1,2,3, \ldots$ by $f(1)=1$ and

$$
f(n)= \begin{cases}f\left(\frac{n}{10}\right) & \text { if } 10 \mid n \\ f(n-1)+1 & \text { otherwise }\end{cases}
$$

Note: The notation $b \mid a$ means integer number a is divisible by integer number b.
(a) Calculate $f(2019)$.
(b) Determine the maximum value of $f(n)$ for $n \leq 2019$.
(c) A new function g is defined by $g(1)=1$ and

$$
g(n)= \begin{cases}g\left(\frac{n}{3}\right) & \text { if } 3 \mid n \\ g(n-1)+1 & \text { otherwise }\end{cases}
$$

Determine the maximum value of $g(n)$ for $n \leq 100$.

Your solution:

(a) Let $A B C D$ be an isosceles trapezoid with $A B=C D=5, B C=2, A D=8$. Find the height of the trapezoid and the length of its diagonals.
(b) For the trapezoid introduced in (a), find the exact value of $\cos \angle A B C$.
(c) In triangle $K L M$, let points G and E be on segment $L M$ so that $\angle M K G=\angle G K E=$ $\angle E K L=\alpha$. Let point F be on segment $K L$ so that $G F$ is parallel to $K M$. Given that $K F E G$ is an isosceles trapezoid and that $\angle K L M=84^{\circ}$, determine α.

Your solution:

Let N be a positive integer. A "good division of N " is a partition of $\{1,2, \ldots, N\}$ into two disjoint non-empty subsets S_{1} and S_{2} such that the sum of the numbers in S_{1} equals the product of the numbers in S_{2}. For example, if $N=5$, then

$$
S_{1}=\{3,5\}, \quad S_{2}=\{1,2,4\}
$$

would be a good division.
(a) Find a good division of $N=7$.
(b) Find an N which admits two distinct good divisions.
(c) Show that if $N \geq 5$, then a good division exists.

Your solution:

Three players A, B and C sit around a circle to play a game in the order $A \rightarrow B \rightarrow C \rightarrow$ $A \rightarrow \cdots$. On their turn, if a player has an even number of coins, they pass half of them to the next player and keep the other half. If they have an odd number, they discard 1 and keep the rest. For example, if players A, B and C start with $(\underline{2}, 3,1)$ coins, respectively, then they will have $(1, \underline{4}, 1)$ after A moves, $(1,2, \underline{3})$ after B moves, and $(\underline{1}, 2,2)$ after C moves, etc. (Here underline indicates the player whose turn is next to move.) We call a position (\underline{x}, y, z) stable if it returns to the same position after every 3 moves.
(a) Show that the game starting with $(\underline{1}, 2,2)$ (A is next to move) eventually reaches $(\underline{0}, 0,0)$.
(b) Show that any stable position has a total of $4 n$ coins for some integer n.
(c) What is the minimum number of coins that is needed to form a position that is neither stable nor eventually leading to ($\underline{0}, 0,0$)?

Your solution:

Premier Sponsors

SOCIETY OF ACTUARIES

Expertise. Insight. Solutions.

in association with

Partners:

ASDAN China
Dalhousie University
Dept. of Mathematics \& Statistics, (University of Saskatchewan)
Maplesoft
Memorial University
University of British Columbia
University of Calgary
University of Manitoba
University of New Brunswick
University of Prince Edward Island
University of Toronto
York University

Government Sponsors:

Alberta Education
Manitoba
Nunavut
Ontario
Prince Edward Island

STUDENT INSTRUCTIONS

General Instructions:

1) Do not open the exam booklet until instructed to do so by your proctor (supervising teacher).
2) Before the exam time starts, the proctor will give you a few minutes to fill in the Participant Identification on the cover page of the exam. You don't need to rush. Be sure to fill in all required information fields and write legibly.
3) Readability counts: Make sure the pencil(s) you use are dark enough to be clearly legible throughout your exam solutions.

Mobile phones and calculators are NOT permitted.
4) Once you have completed the exam and given it to the proctor/teacher you may leave the room.
5) The questions and solutions of the COMC exam must not be publicly discussed or shared (including online) for at least 24 hours.

Exam Format:

There are three parts to the COMC to be completed in a total of 2 hours and 30 minutes:
PART A: Four introductory questions worth 4 marks each. You do not have to show your work. A correct final answer gives full marks. However, if your final answer is incorrect and you have shown your work in the space provided, you might earn partial marks.

PART B: Four more challenging questions worth 6 marks each. Marking and partial marks follow the same rule as part A.

PART C: Four long-form proof problems worth 10 marks each. Complete work must be shown. Partial marks may be awarded.

Diagrams provided are not drawn to scale; they are intended as aids only.
Scrap paper/extra pages: You may use scrap paper, but you have to throw it away when you finish your work and hand in your booklet. Only the work you do on the pages provided in the booklet will be evaluated for marking. Extra pages are not permitted to be inserted in your booklet.

Exact solutions: It is expected that all calculations and answers will be expressed as exact numbers such as $4 \pi, 2+\sqrt{ } 7$, etc., rather than as $12.566,4.646$, etc.

Awards: The names of all award winners will be published on the Canadian Mathematical Society website.

