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Section A – 4 marks each

A1. The average of the numbers 2, 5, x, 14, 15 is x. Determine the value of x.

Correct answer: 9 .

Solution 1: The average of the numbers is
2 + 5 + x+ 14 + 15

5
=
x+ 36

5
; this must be equal x. Solving

36 + x = 5x, we have x = 9.

Solution 2: Since the x being there would not affect the average of the other 4 numbers,

x =
2 + 5 + 14 + 15

4
=

36

4
= 9.

A2. An equilateral triangle has sides of length 4cm. At each vertex, a circle with radius 2cm is
drawn, as shown in the figure below. The total area of the shaded regions of the three circles is
a× π cm2. Determine a.

Correct answer: 2 .

Solution: The area of the intersection of each circle and the triangle is 4π/6 cm2. The three circles do
not overlap, thus the total area is 2π cm2.
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A3. Two 1× 1 squares are removed from a 5× 5 grid as shown.

Determine the total number of squares of various sizes on the grid.

Correct answer: 39 squares.

Solution 1: There are 23 1× 1 squares, 12 2× 2 squares, and 4 3× 3 squares. This gives
23 + 12 + 4 = 39 squares.

Solution 2: Number of squares without missing parts is 12 + 22 + 32 + 42 + 52 = 55.

Missing 1× 1 squares is 2.

Missing 2× 2 squares is 4.

Missing 3× 3 squares is 5.

Missing 4× 4 squares is 4.

Missing 5× 5 squares is 1.

Total missing squares is 2 + 4 + 5 + 4 + 1 = 16. Thus the number of squares in the diagram is 55− 16 = 39.
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A4. Three positive integers a, b, c satisfy

4a × 5b × 6c = 88 × 99 × 1010.

Determine the sum of a+ b+ c.

Correct answer: 36 .

Solution: The prime factorization of the left-hand side is

22a × 5b × 2c × 3c = 22a+c × 3c × 5b,

and the prime factorization of the right-hand-side is

224 × 318 × 210 × 510 = 234 × 318 × 510.

Since the prime factorization of an integer is determined uniquely, we have, 2a+ c = 34, c = 18 and
b = 10. We now find a. Since 2a+ c = 34 and c = 18, 2a+ 18 = 34, yielding a = 8. Therefore,
a+ b+ c = 8 + 10 + 18 = 36.
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Section B – 6 marks each

B1. Andrew and Beatrice practice their free throws in basketball. One day, they attempted a total
of 105 free throws between them, with each person taking at least one free throw. If Andrew made
exactly 1/3 of his free throw attempts and Beatrice made exactly 3/5 of her free throw attempts,
what is the highest number of successful free throws they could have made between them?

Correct answer: 59 free throws.

Solution 1: From their success rates we conclude that each of them must have made a multiple of 15
throws. Specifically, from Andrew’s success rate, his number of throws must be a multiple of 3. Since the
total number of throws (105) is also a multiple of 3, Beatrice’s number of throws must be a multiple of 3
too. From Beatrice’s success rate, her number of throws must be a multiple of 5, and thus must in fact be
a multiple of 15. Similarly, since 105 is a multiple of 5, Andrew’s number of throws must be a multiple of
5 and thus a multiple of 15 too.

Since 1/3 < 3/5, to maximize the result we should assume that Andrew made the least possible number
of throws, that is 15. Then Beatrice made 90 throws.

Then the number of successful free throws they could have made between them is
15× 1

3 + 90× 3
5 = 5 + 54 = 59.

The maximum possible number of successful free throws they could have made between them is 59.

Solution 2: Suppose Andrew made a free throws and Beatrice b free throws, then a+ b = 105, a > 0,
b > 0. Let M be the number of successful free throws. We have

M =
a

3
+

3b

5
=
a

3
+

3(105− a)

5
=

945− 4a

15
= 63− 4a

15
.

M is maximal when 4a
15 is minimal. That is, a = 15 and so M = 59.

The maximum possible number of successful free throws they could have made between them is 59.
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B2. There are twenty people in a room, with a men and b women. Each pair of men shakes hands,
and each pair of women shakes hands, but there are no handshakes between a man and a woman.
The total number of handshakes is 106. Determine the value of a× b.

Correct answer: 84 .

Solution 1: Since there are twenty people in the room,

a+ b = 20.

Now we use the fact that there are no handshakes between a man and a woman. In a group of m people,
there are m(m− 1)/2 pairs of people. Hence, the number of handshakes that took place is

a(a− 1)

2
+
b(b− 1)

2
= 106,

which simplifies to
a2 + b2 − (a+ b)

2
= 106⇒ a2 + b2 = 212 + (a+ b) = 232.

Substituting b = 20− a into this equation yields

a2 + (20− a)2 = 232⇒ a2 + (400− 40a+ a2) = 232

⇒ 2a2 − 40a+ 168 = 0⇒ 2(a2 − 20a+ 84) = 0.

This factors as 2(a− 14)(a− 6) = 0. Therefore, a = 14 or a = 6. Since a+ b = 20, (a, b) = (14, 6) or
(6, 14). Hence, a× b = 84.

Solution 2: Since there are 20 people in the room, there are 20×19
2 = 190 pairs of people. Out of them

exactly a× b pairs do not shake hands.

Thus, we have 190− a× b = 106, and so a× b = 190− 106 = 84.
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B3. Regular decagon (10-sided polygon) ABCDEFGHIJ has area 2017 square units. Determine
the area (in square units) of the rectangle CDHI.

Correct answer: 806.8 square units.

Solution 1: If O is the centre of the decagon and we cut the decagon into equal isosceles triangles, as
shown, we can see that the area of the decagon is 10 times the area of one triangle. Since diagonals CH
and DI are equal in length and bisect each other, quadrilateral CDHI is a rectangle, with the same base
as each of the triangles, but twice the height. Thus the area of CDHI is 4 times the area of each of the
triangles and hence 40% of the area of the decagon or 0.4× 2017 = 806.8 square units.

A
B

C

D

E
F

G

H

I

J

The area of the rectangle is 806.8 square units.

A second solution is provided on the next page.

c© 2017, 2018 Canadian Mathematical Society Page 7



Official Solutions http://comc.math.ca/ COMC 2017

Solution 2: Let s = |AB| be the side length of the regular decagon. Since it is a regular polygon with 10
sides, all its angles are equal, in particular ∠ABC = ∠JAB = 180× (10− 2)/10 = 144◦. Let M be the
midpoint of CI. Draw AM , which will be perpendicular to CI. Place point P on AM and point Q on
CM such that BP is perpendicular to AM and BQ is perpendicular to CM .

A
s

s

B

C

D

E
F

G

H

I

J

M

P

Q

The area of ABCM could be found as a sum of areas of two right triangles BPA and BQC and the
rectangle BPMQ. Note that angle BAP is 144/2=72◦ and so angle ABP is 90− 72 = 18◦. Now, angle
CBQ is 144− 18− 90 = 36◦, and so angle BCQ is 90− 36 = 54◦.

The area of the right triangle BPA is 1
2s

2 sin 18◦ cos 18◦ = 1
4s

2 sin 36◦.

The area of the right triangle BQC is 1
2s

2 sin 54◦ cos 54◦ = 1
4s

2 sin 108◦ = 1
4s

2 cos 18◦.

A
s

s

B

C I

J

M

P

Q

72◦

18◦

36◦

54◦

The area of the rectangle BPMQ is s2 sin 54◦ cos 18◦ = 1
2s

2(sin 36◦ + sin 72◦) = 1
2s

2(sin 36◦ + cos 18◦).

Therefore, the area of ABCM is 3
4s

2(sin 36◦ + cos 18◦) ≡ ∆.

Next, the area of CDHI is 2s2(sin 36◦ + cos 18◦) = 8
3∆.

The total area of the decagon is 4∆ + 8
3∆ = 20

3 ∆ = 2017.

Thus, the area of CDHI is 8
20 × 2017 = 806.8.

Page 8 c© 2017, 2018 Canadian Mathematical Society



COMC 2017 http://comc.math.ca/ Official Solutions

B4. Numbers a, b and c form an arithmetic sequence if b − a = c − b. Let a, b, c be positive
integers forming an arithmetic sequence with a < b < c. Let f(x) = ax2 + bx + c. Two distinct
real numbers r and s satisfy f(r) = s and f(s) = r. If rs = 2017, determine the smallest possible
value of a.

Correct answer: 9 .

Solution 1: Note that
ar2 + br + c = s (1)
as2 + bs+ c = r (2)

Subtracting the second equation from the first yields

a(r2 − s2) + b(r − s) = −(r − s)⇒ a(r + s)(r − s) + (b+ 1)(r − s) = 0

⇒ (a(r + s) + b+ 1)(r − s) = 0.

Since r 6= s, r + s = − b+1
a .

Substituting s = − b+1
a − r into the first equation yields

ar2 + br + c = − b+1
a − r ⇒ ar2 + (b+ 1)r + c+ b+1

a = 0. Substituting r = − b+1
a − s into the second

equation yields as2 + bs+ c = − b+1
a − s⇒ as2 + (b+ 1)s+ c+ b+1

a = 0. Therefore, r, s are the roots to

the equation ax2 + (b+ 1)x+ c+ b+1
a = 0. The product of the roots of this equation is c

a + b+1
a2

= 2017.

We also know that the coefficients form an arithmetic sequence, so let b = a+ k, c = a+ 2k. Then we
have a+2k

a + a+k+1
a2

= 2017 and so

k =
2016a2 − 1− a

2a+ 1
= 1008a− 504 +

503− a
2a+ 1

= 1008a− 504 +
1

2

(
1007

2a+ 1
− 1

)
.

Thus, in order for k to be integer, 2a+ 1 must be a factor of 1007 = 19× 53. Thus, a = 9, a = 26 or
a = 503.

The smallest positive integer a for which k is an integer is a = 9.

For completeness, we find k = 8594 and so b = 8603 and c = 17197.

Then, r = −478 + 3
√

25163 and s = −478− 3
√

25163 satisfy the above relations.

The answer is 9.

A second solution is provided on the next page.
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Solution 2: Note that
ar2 + br + c = s (1)
as2 + bs+ c = r (2)

Subtracting the second equation from the first yields

a(r2 − s2) + b(r − s) = −(r − s)⇒ a(r + s)(r − s) + (b+ 1)(r − s) = 0

⇒ (a(r + s) + b+ 1)(r − s) = 0,

since r 6= s, r + s = − b+1
a .

Adding (1) and (2) we get
a((r + s)2 − 2rs) + b(r + s) + 2c = r + s.

Using r + s = − b+1
a and rs = 2017, we obtain

(b+ 1)2

a
− 2a · 2017− (b+ 1)(b− 1)

a
+ 2c = 0

and then
2(b+ 1)

a
− 2a · 2017 + 2c = 0,

or equivalently
b+ 1− 2017a2 + ac = 0.

Substituting c = 2b− a, we get
b+ 1− 2017a2 + 2ab− a2 = 0,

and so

b =
2018a2 − 1

2a+ 1
=

(2a+ 1)(1009a− 1)− 1007a

2a+ 1
= 1009a− 1− 1007a

2a+ 1
.

Now, b is integer, so 1007a
2a+1 must be integer. Since gcd(a, 2a+ 1) = 1, 2a+ 1 must be a factor of

1007 = 19× 53, and so a = 9, a = 26 or a = 503. The smallest value is a = 9.
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Section C – 10 marks each

Note: Section C questions require participants to show all their work.

C1. For a positive integer n, we define function P (n) to be the sum of the digits of n plus the
number of digits of n. For example, P (45) = 4 + 5 + 2 = 11. (Note that the first digit of n reading
from left to right, cannot be 0).

(a) Determine P (2017).

Solution: 2 + 0 + 1 + 7 + 4 = 14.

The answer is P(2017)=14 .

(b) Determine all numbers n such that P (n) = 4.

Solution: Consider 1-digit numbers, then n = 3. Among 2-digit numbers we need those with the sum of
their digits equal to 2; so we have n = 11 and n = 20. Among 3-digit numbers we need those with the
sum of their digits equal to 1; so we have n = 100. For numbers with 4 or greater than 4 digits, P (n) > 4,
so we have listed all possible numbers with the required property.

The answer is 3, 11, 20, 100 .

(c) Determine with an explanation whether there exists a number n for which P (n)−P (n+1) >
50.

Solution: If n and n+ 1 differ only in one last digit the equality P (n)− P (n+ 1) > 50 is not possible.

Consider the case when n consisits of k 9’s. Then P (n) = 9k + k = 10k and
P (n+ 1) = 1 + (k + 1) = k + 2. So we have P (n)− P (n+ 1) = 9k − 2 > 50, so k ≥ 6. For k = 6 we
obtain n = 999, 999 and P (999, 999)− P (1, 000, 000) = 60− 8 > 50.

The answer is Yes, for examplen = 999, 999 .
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C2. A function f(x) is periodic with period T > 0 if f(x+T ) = f(x) for all x. The smallest such
number T is called the least period. For example, the functions sin(x) and cos(x) are periodic
with least period 2π.

(a) Let a function g(x) be periodic with the least period T = π. Determine the least period
of g(x/3).

Solution: A period of g
(
x
3

)
is 3π because g

(
x+3π

3

)
= g

(
x
3 + π

)
= g

(
x
3

)
. Note that if g(x/3) had a

period smaller than 3π, then g(x) would have a period smaller than π, a contradiction.

The answer is 3π .

(b) Determine the least period of H(x) = sin(8x) + cos(4x).

Solution: The least period of sin(8x) is π
4 because sin(8(x+ π

4 )) = sin(8x+ 2π) = sin(8x). The least
period of cos(4x) is π

2 because cos(4(x+ π
2 )) = cos(4x+ 2π) = cos(4x). We pick the larger of the two

periods for the sum of the functions. In general, it is the least common multiple of the two periods that
must be picked.

Note that if H(x) had a period smaller than π/2, then cos(4x) = H(x)− sin(8x) would also have a period
smaller than π/2, and so cosx would have a period smaller than 2π. Indeed, if cos(4x) = cos(4(x+ T )) =
cos(4x+ 4T ) and T < π/2 then cos y = cos(y + 4T ) and 4T < 4(π/2) = 2π. This is a contradiction.

The answer is π/2 .

(c) Determine the least periods of each of G(x) = sin(cos(x)) and F (x) = cos(sin(x)).

Solution in two parts:

1. G(x+ 2π) = sin(cos(x+ 2π)) = sin(cos(x)) = G(x).

To prove that T = 2π is the smallest positive number consider for example x = 0. Then G(0) = sin(1).
For G(T ) = sin(cos(T )) = sin(1), we need either cos(T ) = 1 + 2πk or cos(T ) = −1 + (2k + 1)π, k ∈ Z. In
the first case we see that the inequality −1 ≤ 1 + 2πk ≤ 1 is true only for k = 0. This gives cos(T ) = 1,
and so the smallest positive T = 2π. In the second case the inequality −1 ≤ −1 + (2k + 1)π ≤ 1 is true
for no integer k. Thus, the only solution is T = 2π.

2. F (x+ π) = cos(sin(x+ π)) = cos(− sin(x)) = cos(sin(x)) = F (x).

To prove that T = π is the smallest positive number consider for example x = 0. Then F (0) = 1. Now,
we need F (0 + T ) = cos(sin(T )) = 1. Thus, sinT = 0, and so the smallest positive T = π.

The answers are 2π and π .
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C3. Let XY Z be an acute-angled triangle. Let s be the side-length of the square which has two
adjacent vertices on side Y Z, one vertex on side XY and one vertex on side XZ. Let h be the
distance from X to the side Y Z and let b be the distance from Y to Z.

(a) If the vertices have coordinates X = (2, 4), Y = (0, 0) and Z = (4, 0), find b, h and s.

Solution: Subtracting coordinates of corresponding points we have b = z1 − y1 = 4− 0 = 4,
h = x2 − y2 = x2 − z2 = 4− 0 = 4. Note that points (1, 2) and (3, 2) lie on sides XY and XZ respectively
and together with points (1, 0) and (3, 0) they define a square that satisfies the conditions of the problem.
This square has side s = 2. (Alternatively, from similar triangles we have s

b = h−s
h that is s

4 = 4−s
4 , so

s = 2.)

x

y

1

1

2

2

3

3

4

4

Y

X

Z

(1, 2) (3, 2)

The answer is b = 4, h = 4, s = 2 .

(b) Given the height h = 3 and s = 2, find the base b.

Solution: Since PQ is parallel to Y Z, triangle XPQ is similar to XY Z. Because h = 3 and
corresponding height of XPQ is 3− 2 = 1, we conclude that the base of XY Z is 3× 2 = 6.

The answer is b = 6 .
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(c) If the area of the square is 2017, determine the minimum area of triangle XY Z.

Solution 1: From the similarity of XPQ and XY Z we have
s

b
=
h− s
h

. Equivalently, s =
bh

b+ h
.

Thus, s2 =
(bh)2

(b+ h)2
= 2K

bh

(b+ h)2
. Here K =

bh

2
is the area of XY Z.

By AM-GM inequality (arithmetic mean is greater or equal than geometric mean), we have
4bh

(b+ h)2
≤ 1,

thus s2 ≤ K

2
.

We have 2017 ≤ K

2
. Thus, 4034 ≤ K.

Now, we show that the minimum area is achieved for b = h = 2s = 2
√

2017. Indeed, if b = h then

s =
bh

b+ h
=
b

2
=
h

2
and K = 2s2 = 4034.

The minimum value for the area of XY Z is 4034.

The answer is 4034 .

Solution 2: From the similarity of XPQ and XY Z we have
s

b
=
h− s
h

. Thus b =
sh

h− s
. The area

[XY Z] =
bh

2
=

h2s

2(h− s)
.

Finding the minimum value of this expression is equivalent to finding the maximum of its reciprocal
2(h− s)
h2s

→ max.

Now, note that the reciprocal is a quadratic function in the variable
1

h
, that is

2(h− s)
h2s

= −2

(
1

h

)2

+
2

s

(
1

h

)
,

so the maximum is achieved at
1

h
=

1

2
· 1

s
or equivalently, for h = 2s.

Then b = 2s and the area [XY Z] = 2s2 = 4034 .

Special thanks to Haneul Shin of Bergen County Academies for providing the solution above.
Edited for clarity and concision.
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C4. Let n be a positive integer and Sn = {1, 2, . . . , 2n − 1, 2n}. A perfect pairing of Sn
is defined to be a partitioning of the 2n numbers into n pairs, such that the sum of the
two numbers in each pair is a perfect square. For example, if n = 4, then a perfect pairing
of S4 is (1, 8), (2, 7), (3, 6), (4, 5). It is not necessary for each pair to sum to the same perfect square.

(a) Show that S8 has at least one perfect pairing.

Solution: For n = 8 we have pairs (1, 8), (2, 7), (3, 6), (4, 5) each of which sums to 9 and
(9, 16), (10, 15), (11, 14), (12, 13) each of which sums to 25.

The answer is (1, 8), (2, 7), (3, 6), (4, 5), (9, 16), (10, 15), (11, 14), (12, 13) .

(b) Show that S5 does not have any perfect pairings.

Solution 1: Each pair must have a sum 16, 9, 4. There are 5 pairs that must sum to 55. There must be
at least two pairs that sum to 16. If there are two such pairs, then the other three pairs must sum to 55 -
32 = 23, which cannot be done with the numbers 9, 4. There cannot be more than two pairs that sum to
16, since there are only two such pairs, namely (6, 10), (7, 9).

P.S. It is also possible to construct an argument by considering all sums modulo 8:

55 ≡ 7 mod 8, 16 ≡ 0 mod 8, 9 ≡ 1, mod 8, 4 ≡ 4 mod 8.

Thus, for five pairs we must have 7 = 4 + 1 + 1 + 1 + 0. But this does not give the correct sum:
4 + 9 + 9 + 9 + 16 = 47 6= 55, so perfect pairing is not possible.

Solution 2: Consider S5 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Note that 10 needs 6 to make a perfect pair, which
means that 3 can only pair perfectly with 1. This leaves 8 with no partner with which to make a perfect
pair.

Special thanks to David Rowe of Holy Heart of Mary Reg. H.S. for providing the solution
above. Edited for clarity and concision.
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(c) Prove or disprove: there exists a positive integer n for which Sn has at least 2017 different
perfect pairings. (Two pairings that are comprised of the same pairs written in a different
order are considered the same pairing.)

Solution 1: The easiest way to get a perfect pairing from {a, a+ 1, ..., 2m} is for all pairs to have the
same sum, i.e. a+ 2m to be a square. The next easiest way is if there are two possible sums, which
happens when the sets {a, ..., 2n} and{2n+ 1, ..., 2m} have both a+ 2n and 2n+ 1 + 2m being squares.

We will first prove the following lemma:

Lemma: Let a ≡ 1 (mod 4) be a positive integer. Then there exists an even positive
integer m such that 2m > a and {a, a + 1, . . . , 2m} has at least two perfect pairings into
(2m− a+ 1)/2 pairs.

Proof of lemma: Let x, y be odd positive integers satisfying

x2 > 2a, y2 > 2(x2 − a+ 1).

Then taking m = y2−x2+a−1
2 , we have

{a, . . . , 2m} = {a, a+ 1, . . . , x2 − a}∪̇{x2 − a+ 1, x2 − a+ 2, . . . , y2 − x2 + a− 1},

where we pair up elements in the first set to all have sum x2, and in the second set to have
sum y2. We would also like to pair up elements so every pair has the same sum, i.e. we
would like 2m+ a to be a square. This translates to solving

y2 − x2 + 2a− 1 = z2,

subject to x, y odd positive integers, z a positive integer, x2 > 2a, and y2 > 2(x2 − a+ 1).
The condition of m being even will be automatically satisfied since y2 − x2 + a − 1 ≡ 0
(mod 4) using x, y odd (and so y2− x2 = (y− x)(y+ x) ≡ 0 (mod 4)) and a ≡ 1 (mod 4).
We rearrange our equation into

(y − z)(y + z) = y2 − z2 = x2 − 2a+ 1.

Picking x = 2r + 1 to be any odd positive integer bigger than
√

2a, and noting that
x2 = 4r(r+ 1) + 1 ≡ 1 (mod 8) and 2a ≡ 2 (mod 8), we see that x2− 2a+ 1 ≡ 0 (mod 8).

Thus we set y − z = 2, y + z = x2−2a+1
2 , and we get

y =
x2 − 2a+ 5

4
, z =

x2 − 2a− 3

4
.

Hence y, z are positive integers, y is odd, and y, z satisfy y2−x2+2a−1 = z2. We assumed
that x2 > 2a, so we will be done as long as y2 > 2(x2 − a + 1). But y2 is a quartic in
x, so this inequality is satisfied for all x sufficiently large, and thus we can pick x to be
sufficiently large for this to hold. This completes the proof of the lemma.
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We now show that for any N ≥ 2 there exists a positive integer n for which Sn has at least N different
perfect pairings. We do it by induction on N , where we also impose that n must be even. The case
N = 2 is given by the above lemma with a = 1. Assume we have it up to N − 1 ≥ 2, and m is an even
number such that {1, . . . , 2m} has at least N − 1 perfect pairings. Then take a = 2m+ 1 ≡ 1 (mod 4) in
the above lemma, to get an n > m even with {2m+ 1, . . . , 2n} having at least two perfect pairings.
Combining these with partitions of {1, . . . , 2m}, we see that {1, . . . , 2n} has at least 2(N − 1) ≥ N
perfect pairings. Therefore the result is true for N = 2017.

Solution 2: Let us first prove the following statement.

Lemma: There exist arbitrarily large n ≡ 0 mod (4) for which the set Sn has a perfect
pairing.

Proof of lemma: This proof is by induction. We know that a perfect pairing exists for
S4. Suppose we have a perfect pairing of the set Sn for some n divisible by 4. We will
construct a perfect pairing of the set Sm with some m > n also divisible by 4.
The construction is a straightforward generalization of the method used in the numerical
example of part (a). We will find m = n+r with r > 0 divisible by 4 such that 2n+2m+1 =
k2 for some integer k. This yields a perfect pairing for Sm consisting of all pairs in a perfect
pairing for Sn and new pairs

(2n+ 1, 2m), (2n+ 2, 2m− 1), , . . . , (2n+ r, 2n+ r + 1).

So we have the equation 2(n+m) + 1 = 4n+ 2r + 1 = k2, i.e.

r =
k2 − 4n− 1

2
.

Put k = 2q + 1, where q2 ≥ n. Then

r = (4q2 + 4q + 1− 4n− 1)/2 = 2(q(q + 1)− n). (∗)

Since both q(q + 1) and n are even, r is divisible by 4 and the construction is complete.
This completes the proof of the lemma.

Note that in this construction each perfect pairing for Sn gives rise to a perfect pairing for
Sm and they all are different.

Suppose now, by way of contradiction, that there is some number H (for the purpose of the problem,
H < 2017) such that for any i ≥ 16 divisible by 4 the set Si has at most H perfect pairings. Let n ≥ 16
be divisible by 4 and such that Sn has exactly H perfect pairing. Carrying out the above construction,
we will find H perfect pairings for Sm. We demonstrate below how to obtain Sm that has a perfect
pairing different from those provided by our construction. Such an Sm will have at least H + 1 perfect
pairings, a contradiction.

Since n is divisible by 4, Put q = n/4 in (∗), which yields r = n2/8 + n/2− 2n = n(n− 12)/8. Here the
role of the condition n ≥ 16 becomes clear: it ensures that r > 0. The following simple calculation shows
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that 2m+ 1 is an integer square:

2m+ 1 = 2(n+ r) + 1 = 2n+
n(n− 12)

4
+ 1 =

n2 − 4n+ 4

4
=

(
n− 2

2

)2

.

Hence, in addition to the perfect pairings for Sm that correspond to those for Sn, we have the perfect
pairing

{(1, 2m), (2, 2m− 1), . . . , (m,m+ 1)}.

Solution 3: This solution is based on the fact that there exists an arithmetic progression of length 3
consisting of integer squares; specifically, {1, 25, 49}.

Observe that if n = 25N2−1
2 for some odd integer N ≥ 1 then there exists at least one perfect pairing of

the set Sn, namely (1, 25N2 − 1), (2, 25N2 − 2), . . . , (25N
2−1
2 , 25N

2+1
2 ).

Now, we can choose large enough integer N for which there are at least 2016 pairs of integers (a, b) such
that 1 ≤ a < b ≤ 2n and b− a = 24N2. (Any odd N with N2 > 2017 will do.)

Then one can take any 2 pairs (a, 25N2 − a) and (b, 25N2 − b) from the perfect pairing above and swap
them with (a, 25N2 − b) and (b, 25N2 − a). Whenever b− a = 24N2, this swap will produce a new perfect
pairing because 25N2 + b− a = 25N2 + 24N2 = 49N2 and 25N2 − b+ a = 25N2 − 24N2 = N2. Thus we
can construct 2016 new perfect pairings, which together with the initial perfect pairing gives 2017
different perfect pairings.

Special thanks to Victor Wang of Sir Winston Churchill S.S. for providing the solution
above. Edited for clarity and concision.

Solution 4: Let us split the set Sn into two groups, 1 . . . x and x+ 1 . . . 2n. The partition
(1, x), (2, x− 1), . . . , (x+ 1, 2n), (x+ 2, 2n− 1), . . . ) of Sn is a perfect pairing provided x is even and
1 + x = m2, m2 + 2n = k2 for some odd integers k > m > 1. Conversely, any pair of integers k, m such
that k2 −m2 = 2n yields a perfect pairing of Sn and the perfect pairings corresponding to different pairs
(m, k) are different. We will exhibit an n such that the equation 2n = k2 −m2 has at least 2017 solutions
in positive integers k,m.

Let us take 2017 distinct Pythagorean triples (ri, si, ti), 1 ≤ i ≤ 2017 (so that r2i + s2i = t2i ), and let
a = Π2017

i=1 si. We may assume that at least one of the si’s is even, so that a is even. Put n = a2/2. Now,

mi = ari/si and ki = ati/si are both integers and m2
i + a2 =

a2(r2i+s
2
i )

s2i
= k2i for any 1 ≤ i ≤ 2017. This

gives 2017 solutions of the equation k2 −m2 = 2n and hence at least 2017 perfect pairings of Sn.

Special thanks to Freddie Zhao of Indus Center for Academic Excellence for providing the
solution above. Edited for clarity and concision.
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