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Section A

1. In triangle ABC, there is a point D on side BC such that BA = AD = DC. Suppose
∠BAD = 80◦. Determine the size of ∠ACB.
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2. The equations x2 − a = 0 and 3x4 − 48 = 0 have the same real solutions. What is the value
of a?

3. A positive integer m has the property that when multiplied by 12, the result is a four-digit
number n of the form 20A2 for some digit A. What is the 4 digit number, n?

4. Alana, Beatrix, Celine, and Deanna played 6 games of tennis together. In each game, the
four of them split into two teams of two and one of the teams won the game. If Alana was
on the winning team for 5 games, Beatrix for 2 games, and Celine for 1 game, for how many
games was Deanna on the winning team?

Section B

1. The area of the circle that passes through the points (1, 1), (1, 7), and (9, 1) can be expressed
as kπ. What is the value of k?

2. Determine all integer values of n for which n2 + 6n+ 24 is a perfect square.

3. 5 Xs and 4 Os are arranged in the below grid such that each number is covered by either an
X or an O. There are a total of 126 different ways that the Xs and Os can be placed. Of these
126 ways, how many of them contain a line of 3 Os and no line of 3 Xs?

A line of 3 in a row can be a horizontal line, a vertical line, or one of the diagonal lines 1−5−9
or 7− 5− 3.

1 2 3

4 5 6

7 8 9
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    Your Solution: 

  Your Solution: 

Your final answer: 

Your final answer: 

Part A: Question 1 (4 marks)  

Part A: Question 2 (4 marks)  
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4. Let f(x) =
1

x3 + 3x2 + 2x
. Determine the smallest positive integer n such that

f(1) + f(2) + f(3) + · · ·+ f(n) >
503

2014
.

Section C

1. A sequence of the form {t1, t2, ..., tn} is called geometric if t1 = a, t2 = ar, t3 = ar2, . . . , tn =
arn−1. For example, {1, 2, 4, 8, 16} and {1,−3, 9,−27} are both geometric sequences. In all
three questions below, suppose {t1, t2, t3, t4, t5} is a geometric sequence.

(a) If t1 = 3 and t2 = 6, determine the value of t5.

(b) If t2 = 2 and t4 = 8, determine all possible values of t5.

(c) If t1 = 32 and t5 = 2, determine all possible values of t4.

2. A local high school math club has 12 students in it. Each week, 6 of the students go on a
field trip.

(a) Jeffrey, a student in the math club, has been on a trip with each other student in the
math club. Determine the minimum number of trips that Jeffrey could have gone on.

(b) If each pair of students have been on at least one field trip together, determine the
minimum number of field trips that could have happened.

3. The line L given by 5y + (2m− 4)x− 10m = 0 in the xy-plane intersects the rectangle with
vertices O(0, 0), A(0, 6), B(10, 6), C(10, 0) at D on the line segment OA and E on the line
segment BC.

(a) Show that 1 ≤ m ≤ 3.

(b) Show that the area of quadrilateral ADEB is 1
3 the area of rectangle OABC.

(c) Determine, in terms of m, the equation of the line parallel to L that intersects OA at F
and BC at G so that the quadrilaterals ADEB, DEGF , FGCO all have the same area.

4. A polynomial f(x) with real coefficients is said to be a sum of squares if there are polynomials
p1(x), p2(x), . . . , pn(x) with real coefficients for which

f(x) = p21(x) + p22(x) + · · ·+ p2n(x)

For example, 2x4 + 6x2 − 4x+ 5 is a sum of squares because

2x4 + 6x2 − 4x+ 5 = (x2)2 + (x2 + 1)2 + (2x− 1)2 + (
√
3)2

(a) Determine all values of a for which f(x) = x2 + 4x+ a is a sum of squares.

2

   Your solution:

Your final answer: 

Part B: Question 4 (6 marks) 
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   Your solution:

Section C

1. A sequence of the form {t1, t2, ..., tn} is called geometric if t1 = a, t2 = ar, t3 = ar2, . . . , tn =
arn−1. For example, {1, 2, 4, 8, 16} and {1,−3, 9,−27} are both geometric sequences. In all
three questions below, suppose {t1, t2, t3, t4, t5} is a geometric sequence of real numbers.

(a) If t1 = 3 and t2 = 6, determine the value of t5.

Solution: t1 = 3 = a (1 mark) and t2 = ar = 6 , so r = 6/3 = 2. 1 mark.

This gives t5 = 3 × 24 = 48. 1 mark

(b) If t2 = 2 and t4 = 8, determine all possible values of t5.

Solution: t2 = 2 = ar and t4 = 8 = ar3, Dividing the two equations gives r2 = 4, so
r = ±2. 1 mark

When r = 2 we have a = 1, so t5 = 24 = 16. 1 mark.

When r = −2 we have a = −1, so t5 = −1 × 24 = −16. 1 mark.

(c) If t1 = 32 and t5 = 2, determine all possible values of t4.

Solution: We have t1 = 32 = a and t5 = 2 = ar4. This gives a = 32, and r4 = 1
16 . 1

mark

When r4 = 1
16 we get r2 = 1

4 or r2 = −1
4 .

When r2 = −1
4 , r is not a real number, so this is not a valid sequence. 1 mark

When r2 = 1
4 we get r = ±1

2 . 1 mark.

This gives t4 = 32 × 1
8 = 4 and t4 = 32 × −1

8 = −4. 1 mark

2. The line L given by 5y + (2m− 4)x− 10m = 0 in the xy-plane intersects the rectangle with
vertices O(0, 0), A(0, 6), B(10, 6), C(10, 0) at D on the line segment OA and E on the line
segment BC.

(a) Show that 1 ≤ m ≤ 3.

Solution: Since D is on OA, the x-coordinate of D is 0. The y-coordinate D is then the
solution to the equation 5y−10m = 0, i.e. y = 2m. Hence L intersects OA at D(0, 2m).
For D to be on OA, 0 ≤ 2m ≤ 6, or equivalently 0 ≤ m ≤ 3. 1 mark

Similarly, the x-coordinate of E is 10, so the y-coordinate is the solution to 5y + (2m−
4)(10)− 10m = 0, whose solutions is y = 8− 2m. Hence 0 ≤ 8− 2m ≤ 6 or equivalently
1 ≤ m ≤ 4. 1 mark

Thus 0 ≤ m ≤ 3 and 1 ≤ m ≤ 4 so 1 ≤ m ≤ 3. 1 mark

5

4. Let f(x) =
1

x3 + 3x2 + 2x
. Determine the smallest positive integer n such that

f(1) + f(2) + f(3) + · · ·+ f(n) >
503

2014
.
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(b) If t2 = 2 and t4 = 8, determine all possible values of t5.
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2. A local high school math club has 12 students in it. Each week, 6 of the students go on a
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(a) Jeffrey, a student in the math club, has been on a trip with each other student in the
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vertices O(0, 0), A(0, 6), B(10, 6), C(10, 0) at D on the line segment OA and E on the line
segment BC.

(a) Show that 1 ≤ m ≤ 3.

(b) Show that the area of quadrilateral ADEB is 1
3 the area of rectangle OABC.

(c) Determine, in terms of m, the equation of the line parallel to L that intersects OA at F
and BC at G so that the quadrilaterals ADEB, DEGF , FGCO all have the same area.

4. A polynomial f(x) with real coefficients is said to be a sum of squares if there are polynomials
p1(x), p2(x), . . . , pn(x) with real coefficients for which

f(x) = p21(x) + p22(x) + · · ·+ p2n(x)

For example, 2x4 + 6x2 − 4x+ 5 is a sum of squares because

2x4 + 6x2 − 4x+ 5 = (x2)2 + (x2 + 1)2 + (2x− 1)2 + (
√
3)2

(a) Determine all values of a for which f(x) = x2 + 4x+ a is a sum of squares.

2

Part C: Question 1 (10 marks)  
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   Your solution:
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This gives t4 = 32 × 1
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2. The line L given by 5y + (2m− 4)x− 10m = 0 in the xy-plane intersects the rectangle with
vertices O(0, 0), A(0, 6), B(10, 6), C(10, 0) at D on the line segment OA and E on the line
segment BC.
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Solution: Since D is on OA, the x-coordinate of D is 0. The y-coordinate D is then the
solution to the equation 5y−10m = 0, i.e. y = 2m. Hence L intersects OA at D(0, 2m).
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arn−1. For example, {1, 2, 4, 8, 16} and {1,−3, 9,−27} are both geometric sequences. In all
three questions below, suppose {t1, t2, t3, t4, t5} is a geometric sequence.

(a) If t1 = 3 and t2 = 6, determine the value of t5.

(b) If t2 = 2 and t4 = 8, determine all possible values of t5.

(c) If t1 = 32 and t5 = 2, determine all possible values of t4.

2. A local high school math club has 12 students in it. Each week, 6 of the students go on a
field trip.

(a) Jeffrey, a student in the math club, has been on a trip with each other student in the
math club. Determine the minimum number of trips that Jeffrey could have gone on.

(b) If each pair of students have been on at least one field trip together, determine the
minimum number of field trips that could have happened.

3. The line L given by 5y + (2m− 4)x− 10m = 0 in the xy-plane intersects the rectangle with
vertices O(0, 0), A(0, 6), B(10, 6), C(10, 0) at D on the line segment OA and E on the line
segment BC.

(a) Show that 1 ≤ m ≤ 3.

(b) Show that the area of quadrilateral ADEB is 1
3 the area of rectangle OABC.

(c) Determine, in terms of m, the equation of the line parallel to L that intersects OA at F
and BC at G so that the quadrilaterals ADEB, DEGF , FGCO all have the same area.

4. A polynomial f(x) with real coefficients is said to be a sum of squares if there are polynomials
p1(x), p2(x), . . . , pn(x) with real coefficients for which

f(x) = p21(x) + p22(x) + · · ·+ p2n(x)

For example, 2x4 + 6x2 − 4x+ 5 is a sum of squares because

2x4 + 6x2 − 4x+ 5 = (x2)2 + (x2 + 1)2 + (2x− 1)2 + (
√
3)2

(a) Determine all values of a for which f(x) = x2 + 4x+ a is a sum of squares.

2

Part C: Question 2 (10 marks)  
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O

A B

C

D

E

(b) Show that the area of quadrilateral ADEB is 1
3 the area of rectangle OABC.

Solution: Observe ADEB is a trapezoid with base AB and parallel sides are AD and
BE, so its area is

AB · AD + BE

2
= 10 · (6 − 2m) + (6 − (8 − 2m))

2
= 10 · 4

2
= 20,2 marks

and since the area of OABC is 6 · 10, the result follows. 1 mark

(c) Determine, in terms of m, the equation of the line parallel to L that intersects OA at F
and BC at G so that the quadrilaterals ADEB, DEGF , FGCO all have the same area.

Solution: In order for the quadrilaterals to have equal area, it is sufficient to demand
FGCO has area 20 (i.e. 1

3 the area of OABC). 1 mark

Let M(5, b) be the midpoint of F and G. Then the average of the y-coordinates of F
and G is b, so the area of FGCO is b · 10 = 10b, so b = 2. Hence the point M(5, 2) is on
this line. 1 mark

The slope of this line is the same as L, so it is given by
4 − 2m

5
. 1 mark

Thus the line is

y =


4 − 2m

5


x + (2 − 2m).

1 mark

3. A local high school math club has 12 students in it. Each week, 6 of the students go on a
field trip.

(a) Jeffrey, a student in the math club, has been on a trip with each other student in the
math club. Determine the minimum number of trips that Jeffrey could have gone on.

Solution: There are 11 students in the club other than Jeffrey and each field trip that
Jeffrey is on has 5 other students. In order for Jeffrey to go on a field trip with each
other student, he must go on at least 115  = 2.2 = 3 field trips 2 marks.

6

   Your solution:

Part C: Question 3 (10 marks)  

4. Let f(x) =
1

x3 + 3x2 + 2x
. Determine the smallest positive integer n such that

f(1) + f(2) + f(3) + · · ·+ f(n) >
503

2014
.

Section C

1. A sequence of the form {t1, t2, ..., tn} is called geometric if t1 = a, t2 = ar, t3 = ar2, . . . , tn =
arn−1. For example, {1, 2, 4, 8, 16} and {1,−3, 9,−27} are both geometric sequences. In all
three questions below, suppose {t1, t2, t3, t4, t5} is a geometric sequence.

(a) If t1 = 3 and t2 = 6, determine the value of t5.

(b) If t2 = 2 and t4 = 8, determine all possible values of t5.

(c) If t1 = 32 and t5 = 2, determine all possible values of t4.

2. A local high school math club has 12 students in it. Each week, 6 of the students go on a
field trip.

(a) Jeffrey, a student in the math club, has been on a trip with each other student in the
math club. Determine the minimum number of trips that Jeffrey could have gone on.

(b) If each pair of students have been on at least one field trip together, determine the
minimum number of field trips that could have happened.

3. The line L given by 5y + (2m− 4)x− 10m = 0 in the xy-plane intersects the rectangle with
vertices O(0, 0), A(0, 6), B(10, 6), C(10, 0) at D on the line segment OA and E on the line
segment BC.

(a) Show that 1 ≤ m ≤ 3.

(b) Show that the area of quadrilateral ADEB is 1
3 the area of rectangle OABC.

(c) Determine, in terms of m, the equation of the line parallel to L that intersects OA at F
and BC at G so that the quadrilaterals ADEB, DEGF , FGCO all have the same area.

4. A polynomial f(x) with real coefficients is said to be a sum of squares if there are polynomials
p1(x), p2(x), . . . , pn(x) with real coefficients for which

f(x) = p21(x) + p22(x) + · · ·+ p2n(x)

For example, 2x4 + 6x2 − 4x+ 5 is a sum of squares because

2x4 + 6x2 − 4x+ 5 = (x2)2 + (x2 + 1)2 + (2x− 1)2 + (
√
3)2

(a) Determine all values of a for which f(x) = x2 + 4x+ a is a sum of squares.

2
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4. Let f(x) =
1

x3 + 3x2 + 2x
. Determine the smallest positive integer n such that

f(1) + f(2) + f(3) + · · ·+ f(n) >
503

2014
.

Section C

1. A sequence of the form {t1, t2, ..., tn} is called geometric if t1 = a, t2 = ar, t3 = ar2, . . . , tn =
arn−1. For example, {1, 2, 4, 8, 16} and {1,−3, 9,−27} are both geometric sequences. In all
three questions below, suppose {t1, t2, t3, t4, t5} is a geometric sequence.

(a) If t1 = 3 and t2 = 6, determine the value of t5.

(b) If t2 = 2 and t4 = 8, determine all possible values of t5.

(c) If t1 = 32 and t5 = 2, determine all possible values of t4.

2. A local high school math club has 12 students in it. Each week, 6 of the students go on a
field trip.

(a) Jeffrey, a student in the math club, has been on a trip with each other student in the
math club. Determine the minimum number of trips that Jeffrey could have gone on.

(b) If each pair of students have been on at least one field trip together, determine the
minimum number of field trips that could have happened.

3. The line L given by 5y + (2m− 4)x− 10m = 0 in the xy-plane intersects the rectangle with
vertices O(0, 0), A(0, 6), B(10, 6), C(10, 0) at D on the line segment OA and E on the line
segment BC.

(a) Show that 1 ≤ m ≤ 3.

(b) Show that the area of quadrilateral ADEB is 1
3 the area of rectangle OABC.

(c) Determine, in terms of m, the equation of the line parallel to L that intersects OA at F
and BC at G so that the quadrilaterals ADEB, DEGF , FGCO all have the same area.

4. A polynomial f(x) with real coefficients is said to be a sum of squares if there are polynomials
p1(x), p2(x), . . . , pn(x) with real coefficients for which

f(x) = p21(x) + p22(x) + · · ·+ p2n(x)

For example, 2x4 + 6x2 − 4x+ 5 is a sum of squares because

2x4 + 6x2 − 4x+ 5 = (x2)2 + (x2 + 1)2 + (2x− 1)2 + (
√
3)2

(a) Determine all values of a for which f(x) = x2 + 4x+ a is a sum of squares.

2
(b) Determine all values of a for which f(x) = x4+2x3+ (a− 7)x2+ (4− 2a)x+ a is a sum

of squares, and for such values of a, write f(x) as a sum of squares.

(c) Suppose f(x) is a sum of squares. Prove there are polynomials u(x), v(x) with real
coefficients such that f(x) = u2(x) + v2(x).

3

   Your solution:

Part C: Question 4 (10 marks)  
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