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2011 COMC contest

Short Answer Problems

A1. If r is a number such that r2 − 6r + 5 = 0, what is the value of (r − 3)2?

A2. Carmen selects four different numbers from the set {1, 2, 3, 4, 5, 6, 7} whose sum is 11. If ℓ is
the largest of these four numbers, what is the value of ℓ?

A3. The faces of a cube contain the numbers 1, 2, 3, 4, 5, 6 such that the sum of the numbers on
each pair of opposite faces is 7. For each of the cube’s eight corners, we multiply the three
numbers on the faces incident to that corner, and write down its value. (In the diagram, the
value of the indicated corner is 1× 2× 3 = 6.) What is the sum of the eight values assigned
to the cube’s corners?

1

2

3

A4. In the figure, AQPB and ASRC are squares, and AQS is an equilateral triangle. If QS = 4
and BC = x, what is the value of x?
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B1. Arthur is driving to David’s house intending to arrive at a certain time. If he drives at 60
km/h, he will arrive 5 minutes late. If he drives at 90 km/h, he will arrive 5 minutes early.
If he drives at n km/h, he will arrive exactly on time. What is the value of n?

B2. Integers a, b, c, d, and e satisfy the following three properties:

(i) 2 ≤ a < b < c < d < e < 100

(ii) gcd(a, e) = 1

(iii) a, b, c, d, e form a geometric sequence.

What is the value of c?

B3. In the figure, BC is a diameter of the circle, where BC =
√
901, BD = 1, and DA = 16. If

EC = x, what is the value of x?
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B4. A group of n friends wrote a math contest consisting of eight short-answer problems S1,
S2, S3, S4, S5, S6, S7, S8, and four full-solution problems F1, F2, F3, F4. Each person in
the group correctly solved exactly 11 of the 12 problems. We create an 8 × 4 table. Inside
the square located in the ith row and jth column, we write down the number of people who
correctly solved both problem Si and problem Fj . If the 32 entries in the table sum to 256,
what is the value of n?
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Full Solution Problems

C1. ABC is a triangle with coordinates A = (2, 6), B = (0, 0), and C = (14, 0).

B(0, 0)

A(2, 6)

C(14, 0)

(a) Let P be the midpoint of AB. Determine the equation of the line perpendicular to AB
passing through P .

(b) Let Q be the point on line BC for which PQ is perpendicular to AB. Determine the
length of AQ.

(c) There is a (unique) circle passing through the points A, B, and C. Determine the radius
of this circle.

C2. Charlotte writes a test consisting of 100 questions, where the answer to each question is either
TRUE or FALSE. Charlotte’s teacher announces that for every five consecutive questions on
the test, the answers to exactly three of them are TRUE. Just before the test starts, the teacher
whispers to Charlotte that the answers to the first and last questions are both FALSE.

(a) Determine the number of questions for which the correct answer is TRUE.

(b) What is the correct answer to the sixth question on the test?

(c) Explain how Charlotte can correctly answer all 100 questions on the test.

C3. Let n be a positive integer. A row of n + 1 squares is written from left to right, numbered
0, 1, 2, . . . , n, as shown.

· · ·0 1 2 n

Two frogs, named Alphonse and Beryl, begin a race starting at square 0. For each second
that passes, Alphonse and Beryl make a jump to the right according to the following rules: if
there are at least eight squares to the right of Alphonse, then Alphonse jumps eight squares
to the right. Otherwise, Alphonse jumps one square to the right. If there are at least seven
squares to the right of Beryl, then Beryl jumps seven squares to the right. Otherwise, Beryl
jumps one square to the right. Let A(n) and B(n) respectively denote the number of seconds
for Alphonse and Beryl to reach square n. For example, A(40) = 5 and B(40) = 10.

(a) Determine an integer n > 200 for which B(n) < A(n).

(b) Determine the largest integer n for which B(n) ≤ A(n).
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C4. Let f(x) = x2 − ax+ b, where a and b are positive integers.

(a) Suppose a = 2 and b = 2. Determine the set of real roots of f(x)−x, and the set of real
roots of f(f(x))− x.

(b) Determine the number of pairs of positive integers (a, b) with 1 ≤ a, b ≤ 2011 for which
every root of f(f(x))− x is an integer.
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COMC 2011 Solutions

A1. If r is a number for which r2 − 6r + 5 = 0, what is the value of (r − 3)2?

Solution: The answer is 4.

Solution 1: Note that (r−3)2 = r2−6r+9. Since r2−6r+5 = 0, r2−6r+9 = 4. Therefore,
the answer is 4.

Solution 2: The quadratic equation r2 − 6r + 5 factors as

(r − 1)(r − 5).

Therefore, r = 1 or r = 5. If r = 1, then (r−3)2 = (−2)2 = 4. If r = 5, then (r−3)2 = 22 = 4.
In either case, (r − 3)2 = 4.

Solution 3: By completing the square on r2 − 6r + 5, we have r2 − 6r + 5 = (r − 3)2 − 4.
Since r2 − 6r + 5 = 0, (r − 3)2 − 4 = 0. Hence, (r − 3)2 = 4.
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A2. Carmen selects four different numbers from the set {1, 2, 3, 4, 5, 6, 7} whose sum is 11. If ℓ is
the largest of these four numbers, what is the value of ℓ?

Solution: The answer is 5.

Solution 1: Note that the sum of the smallest four integers in the list is 1 + 2 + 3 + 4 = 10.
Hence, 1 + 2 + 3 + 5 = 11. The largest positive integer in this sum is 5. Therefore, ℓ = 5.

Solution 2: Since ℓ is the largest of four numbers from {1, 2, 3, 4, 5, 6, 7}, ℓ ≥ 4. Therefore,
l is equal to one of 4, 5, 6 and 7. If ℓ = 7, then the smallest possible sum of the four numbers
is 1 + 2 + 3 + 7 = 13 > 11. Therefore, ℓ 6= 7. Similarly, if ℓ = 6, then the smallest possible
sum of the four numbers is 1 + 2 + 3 + 6 = 12 > 11. Similarly, ℓ 6= 4. Therefore, ℓ = 5.
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A3. The faces of a cube contain the numbers 1, 2, 3, 4, 5, 6 such that the sum of the numbers on
each pair of opposite faces is 7. For each of the cube’s eight corners, we multiply the three
numbers on the faces incident to that corner, and write down its value. (In the diagram, the
value of the indicated corner is 1× 2× 3 = 6.) What is the sum of the eight values assigned
to the cube’s corners?

1

2

3

Solution: The answer is 343.
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Solution 1: The left picture shows the corners and the faces touching the side labeled 1 and
the right picture shows the opposite side of the die, whose label is 6, which is incident to the
other four corners.

We compute the eight numbers individually and sum the eight numbers. The eight triplets
of integers at the eight corners are

(1, 2, 3), (1, 2, 4), (1, 3, 5), (1, 4, 5), (6, 2, 3), (6, 2, 4), (6, 3, 5), (6, 4, 5).

These eight values are
1× 2× 3 = 6
1× 2× 4 = 8
1× 3× 5 = 15
1× 4× 5 = 20
6× 2× 3 = 36
6× 2× 4 = 48
6× 3× 5 = 90
6× 4× 5 = 120 .

The sum of these eight positive integers is 343.

Solution 2: Since no corner contains two numbers that sum to 7, the sum in solution 1 can
be computed as

(1 + 6)(2 + 5)(3 + 4) = 73 = 343.
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A4. In the figure, AQPB and ASRC are squares, and AQS is an equilateral triangle. If QS = 4
and BC = x, what is the value of x?
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x

Solution: The answer is 4
√
3.

Solution 1: Since ∆AQS is equilateral, AQ = QS = AS. Since QS = 4, AQ = AS = 4.
Since AQPB and ASRC are squares, AB = AQ = 4 and AC = AS = 4. Since ∆AQS is
equilateral, ∠QAS = 60◦. Therefore, ∠BAC = 360◦ − 90◦ − 90◦ − ∠QAS = 120◦.

A

B CM

Drop the perpendicular from A to side BC and let this perpendicular intersect BC at M .
Then by symmetry, M is the midpoint of BC and ∠BAM = ∠CAM = ∠BAC/2 = 120/2 =
60◦. Therefore, ∆ABM is a 30− 60− 90 triangle. Consequently,

BM

BA
=

√
3

2
.

Hence, we have BM = 4
√
3/2 = 2

√
3. Similarly, CM = 2

√
3. Therefore, BC = BM+CM =

4
√
3.

Solution 2: By Solution 1, AB = AC = 4 and ∠BAC = 120◦. By the Cosine Law, we have

BC =
√
AB2 +AC2 − 2 ·AB ·AC · cos∠BAC

=
√
42 + 42 − 2 · 4 · 4 · cos 120◦

=
√

32− 32 · (−1/2) =
√
32 + 16 =

√
48 = 4

√
3.

Therefore, x = 4
√
3.
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Solution 3:

A

B C

P

Q

R

SN

M

Let M,N be the midpoints of BC and QS, respectively. By symmetry, M,A,N are collinear
and the line MN is perpendicular to lines QS and BC. By Solution 1, ∠QAS = 60◦ and
∠BAC = 120◦. Therefore, by symmetry, ∠QAN = 30◦ and ∠BAM = 60◦. Since ∆AQS
is equilateral, ∠AQN = 60◦ and ∠ABM = 180◦ − ∠BAM − ∠AMB = 180◦ − 60◦ − 90◦ =
30◦. Since AB = AQ, ∆ANQ is congruent to ∆BMA. Therefore, BM = AN . By the
Pythagorean Theorem,

BM = AN =
√

AQ2 −QN2 =
√

42 − 22 =
√
12 = 2

√
3.

Hence, x = BC = 2 ·BM = 2
√
3.
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B1. Arthur is driving to David’s house intending to arrive at a certain time. If he drives at 60
km/h, he will arrive 5 minutes late. If he drives at 90 km/h, he will arrive 5 minutes early.
If he drives at n km/h, he will arrive exactly on time. What is the value of n?

The answer is 72.

Solution 1: Let d be the distance from Arthur to David’s house in km and t the time, in
hours, for Arthur to drive to David’s place driving at n km/h. If he drives at 60 km/h,
Arthur will drive for t hours + 5 minutes = t + 5/60 hours. If he drives at 90km/h, Arthur
will drive for t hours - 5 minutes = t− 5/60 hours. Therefore, using the distance = speed ×
time formula, we have

d = nt = 60(t+ 5/60) = 90(t− 5/60). (1)

This simplifies to

d = nt = 60t+ 5 = 90t− 15

2
, (1)

We first determine t. Using the right-most equation of (1), we have 30t = 5 + 15

2
= 25

2
.

Therefore, t = 25/60. Hence, d = 60t + 5 = 60(25/60) + 5 = 30. Consequently, n = d/t =
30/(25/60) = 30× 60/25 = 72 km/h.

Solution 2: Let d be the distance from Arthur to David’s house. Note that the time it takes
for Arthur to drive to David’s place at n km/h is the average of the times it take for Arthur
to drive to David’s place at 60 and 90 km/h, respectively. Hence,

d

n
=

d
60

+ d
90

2
.

Dividing both sides by d and cross multiplying yields

2

n
=

1

60
+

1

90
=

5

180
.

Hence, 5n = 360. Therefore, n = 72.
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B2. Integers a, b, c, d, and e satisfy the following three properties:

(i) 2 ≤ a < b < c < d < e < 100

(ii) gcd(a, e) = 1

(iii) a, b, c, d, e form a geometric sequence.

What is the value of c?

Solution: The answer is 36.

Let r be the common ratio of the geometric sequence a, b, c, d, e. Since a < b < c < d < e,
r > 1. Then a = a, b = ar, c = ar2, d = ar3, e = ar4. Since a, e have no common factors
and a > 1, r is not an integer. Let x/y be this common ratio, where x, y are positive
integers and gcd(x, y) = 1. Since r > 1 and is not an integer, x > y > 1. Therefore,
b = ax/y, c = ax2/y2, d = ax3/y3 and e = ax4/y4. Since e is an integer and gcd(x, y) = 1,
a is divisible by y4. Then a = ky4 for some positive integer k. Then a = ky4, b = kxy3, c =
kx2y2, d = kx3y, e = kx4. Since gcd(a, e) = 1, k = 1. Hence, a = y4 and e = x4. Since
2 ≤ a < e < 100 and 34 < 100 < 44, 2 ≤ y < x ≤ 3, which implies that x = 3 and y = 2.
Then c = kx2y2 = 1 · 32 · 22 = 62 = 36.

11
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B3. In the figure, BC is a diameter of the circle, where BC =
√
901, BD = 1, and DA = 16. If

EC = x, what is the value of x?

B C

D

E

A

Solution: The answer is 26.

Solution 1: Since BC is the diameter of the circle, ∠BDC = ∠BEC = 90◦. By the
Pythagorean Theorem, we have

CD =
√

BC2 −BD2 =
√

901− 12 =
√
900 = 30.

Since ∠BDC = 90◦, ∠ADC = 90◦. Then by the Pythagorean Theorem, we have

AC =
√

AD2 +DC2 =
√

162 + 302 = 34.

Since x = CE, AE = 34 − x. We need to determine x. By the Pythagorean Theorem, we
have BE =

√
BA2 −AE2 =

√
BC2 − CE2. Hence,

BA2 −AE2 = BC2 − CE2.

Note that BA = BD +DA = 16 + 1 = 17. Therefore,

172 − (34− x)2 = 901− x2

⇒ x2 + 289 = (x− 34)2 + 901
⇒ x2 + 289 = x2 − 68x+ 1156 + 901
⇒ 68x = 1768.

Therefore, x = 1768/68 = (17× 104)/(17× 4) = 104/4 = 26. Hence, EC = 26.

Solution 2: As in Solution 1, ∠BDC = ∠BEC = 90◦, CD = 30 and AC = 34. By
computing the area of ∆ABC in two different ways, we have

the area of ∆ABC =
1

2
×AB ×DC =

1

2
×AC ×BE.

12
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Therefore, AB ·DC = AC ·BE. Hence, 17·30 = 34·BE. Therefore, 30 = 2·BE. Equivalently,
BE = 15. Therefore, by the Pythagorean Theorem,

EC =
√

BC2 −BE2 =
√

901− 152 =
√
676 = 26.

Solution 3: As in Solution 1, ∠BDC = ∠BEC = 90◦, CD = 30 and AC = 34. Compare
∆ADC and ∆AEB. Note that ∠ADC = ∠AEB = 90◦ and ∠DAC = ∠EAB. Therefore,
∆ADC is similar to ∆AEB. Consequently,

AD

AE
=

AC

AB
.

Therefore, AD · AB = AE · AC. Note that AB = AD + BD = 16 + 1 = 17. Hence,
16×17 = AE ·34. Therefore, AE = 8. We then conclude that EC = AC−AE = 34−8 = 26.
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B4. A group of n friends wrote a math contest consisting of eight short-answer problems S1,
S2, S3, S4, S5, S6, S7, S8, and four full-solution problems F1, F2, F3, F4. Each person in
the group correctly solved exactly 11 of the 12 problems. We create an 8 × 4 table. Inside
the square located in the ith row and jth column, we write down the number of people who
correctly solved both problem Si and problem Fj . If the 32 entries in the table sum to 256,
what is the value of n?

S1

S2

S3

S4

S5

S6

S7

S8

F1 F2 F3 F4

Solution: The answer is 10.

Solution 1: The sum of all of the numbers written is the sum of all of the number of pairs
of problems of the form (Si, Fj) each student solved. The contribution of each student to this
sum is the product of the number of problems this student solved in the short-answer part
and the number of problems this student solved in the full-solution part. Since each student
solved 11 problems, each student solved either 8 short-answer problems and 3 full-solution
problems, or 7 short-answer problems and 4 full-solution problems. Let x be the number of
students who solved 8 short-answer problems and 3 full-solution problems and y the number
of students who solved 7 short-answer problems and 4 full-solution problems. Then the sum
of the numbers written down is 8×3×x+7×4×y = 256. Hence, 24x+28y = 256. Dividing
both sides by 4 yields 6x + 7y = 64. Note that 0 ≤ x ≤ 10. Substituting each such value of
x, we get the following values of y:

x y

0 64/7

1 58/7

2 52/7

3 46/7

4 40/7

5 34/7

6 4

7 22/7

8 16/7

9 10/7

10 4/7

14
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We note that only (x, y) = (6, 4) yields a non-negative integer solution for x and y. Hence,
the number of students is x+ y = 6 + 4 = 10.

Solution 2: Since each person solved 11 of the 12 problems, there was one problem that
each person did not correctly solve. Let si be the number of people who missed problem Si

(for i = 1, . . . 8) and let fj be the number of people who missed problem Fj (for j = 1, . . . 4).

As in Solution 1, let x be the number of students who solved 8 short-answer problems and 3
full-solution problems, and let y be the number of students who solved 7 short-answer prob-
lems and 4 full-solution problems. By definition, y = s1+s2+ ...+s8 and x = f1+f2+f3+f4
and n = x+ y.

Consider the entry in the ith row and jth column of our 8 × 4 table. This number must be
n− si− fj . Adding all 32 entries, we find that 256 = 32n− 4(s1+ ...+ s8)− 8(f1+ ...+ f4) =
32n − 4y − 8x = 32(x + y) − 4y − 8x = 24x + 28y. Therefore, 24x + 28y = 256. We then
complete the problem as in Solution 1.

Solution 3: Let si, fj be as in Solution 2. Then

n = (s1 + s2 + . . .+ s8) + (f1 + f2 + f3 + f4).

Also as in Solution 2, we have

256 = 32n− 4(s1 + s2 + . . .+ s8)− 8(f1 + f2 + f3 + f4)
= 32n− 4n− 4(f1 + f2 + f3 + f4)
= 28n− 4(f1 + f2 + f3 + f4)

Therefore, 64 = 7n− (f1 + f2 + f3 + f4). Hence, n ≥ 10. But note that if n ≥ 11, then

(f1 + f2 + f3 + f4) = 7n− 64 = n+ (6n− 64) > n.

Since f1+f2+f3+f4 is the number of people that missed a full-solution problem, f1+f2+f3+f4
is at most the number of people in the group, which is n. This contradicts f1+f2+f3+f4 > n.
Hence, n 6≥ 11. This result in conjunction with n ≥ 10 yields n = 10.
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1 Full Solution Problems

C1. ABC is a triangle with coordinates A = (2, 6), B = (0, 0), and C = (14, 0).

B(0, 0)

A(2, 6)

C(14, 0)

(a) Let P be the midpoint of AB. Determine the equation of the line perpendicular to AB
passing through P .

(b) Let Q be the point on line BC for which PQ is perpendicular to AB. Determine the
length of AQ.

(c) There is a (unique) circle passing through the points A, B, and C. Determine the radius
of this circle.

Solution:

(a) The answer is y = −1/3 · x+ 10/3 or x+ 3y = 10.

The midpoint of AB is

P =

(

0 + 2

2
,
0 + 6

2

)

= (1, 3).

The slope of AB is 6/2 = 3. Therefore, the slope of the line perpendicular to AB is −1/3.
Hence, the equation of the line perpendicular to AB passing through P is

y − 3 =
−1

3
(x− 1).

This is equivalent to

y =
−1

3
x+

10

3
.

Rewriting this yields
x+ 3y = 10.

(b) The answer is 10.

Solution 1: The line BC is the line y = 0. Since Q lies on BC, the y-coordinate of Q is 0.
Since Q also lies on the line passing through P perpendicular to AB and the equation of this
line is x+ 3y = 10, we substitute y = 0 into x+ 3y = 10 to yield x = 10. Hence, Q = (10, 0).
Since A = (2, 6), by the Pythagorean Theorem,

AQ =
√

(10− 2)2 + (0− 6)2 =
√

82 + 62 = 10.

16
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Solution 2: As in Solution 1, Q = (10, 0). Since Q lies on the perpendicular bisector of AB,
QA = QB. Since Q = (10, 0) and B = (0, 0), QA = QB = 10.

(c) The answer is 5
√
2 or

√
50.

Solution 1: Let O = (x, y) be the centre of the circle. Since O lies on the perpendicular
bisector of BC, x = (0 + 14)/2 = 7. Since O lies on the line perpendicular to AB passing
through P and the equation of the line passing through P perpendicular to AB is x+3y = 10,
we substitute x = 7 into x+3y = 10 to yield y = 1. Hence, the centre of the circle is at (7, 1).
The radius of the circle is the distance from O to any of A,B,C. For simplicity’s sake, we
compute the length of OB, since B = (0, 0). By the Pythagorean Theorem, the radius of the
circle is OB =

√
72 + 12 =

√
50 = 5

√
2.

Solution 2: We will use the following property of a triangle; let a, b, c be the side lengths
of a triangle, R the circumradius of the triangle and K the area of the triangle. Then the
quantities a, b, c, R,K have the following relationship;

K =
abc

4R
.

In this triangle, AB =
√
22 + 62 =

√
40 = 2

√
10, BC = 14 and CA =

√

(14− 2)2 + 62 =√
180 = 3

√
20. Note that

K =
1

2
×BC × {the height to side BC} =

1

2
× 14× 6 = 42.

Therefore,

R =
AB ·BC · CA

4K
=

2
√
10× 14× 3

√
20

4× 42
=

60
√
2× 14

4× 42
= 5

√
2.
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C2. Charlotte writes a test consisting of 100 questions, where the answer to each question is either
TRUE or FALSE. Charlotte’s teacher announces that for every five consecutive questions on
the test, the answers to exactly three of them are TRUE. Just before the test starts, the teacher
whispers to Charlotte that the answers to the first and last questions are both FALSE.

(a) Determine the number of questions for which the correct answer is TRUE.

(b) What is the correct answer to the sixth question on the test?

(c) Explain how Charlotte can correctly answer all 100 questions on the test.

Solution

(a) The answer is 60.

Split the 100 problems into groups of 5, namely 1−5, 6−10, 11−15, . . . , 91−95, 96−100.
Since there are 100 problems and five problems per group and every set of five consecutive
problems contain exactly three problems whose answer is TRUE, each group contains
three problems whose answers are TRUE. Since there are 20 groups, there are 20×3 = 60
problems whose answers are TRUE on the test.

(b) Consider the problems 1, 2, 3, 4, 5, 6. Among problems 1−5, there are exactly three prob-
lems whose answer is TRUE. Since the answer to the first problem is FALSE, among
problems 2− 5, exactly three of these problems have answer TRUE. Now consider prob-
lem 6. Since problems 2 − 6 contains exactly three problems whose answers are TRUE
and problems 2−5 already contain 3 such problems, the answer to problem 6 is FALSE.

(c) Solution 1: We claim that the answer to problem n has the same answer as problem
n + 5. Consider the problems n, n + 1, n + 2, n + 3, n + 4, n + 5. Note that problems
n, n+1, n+2, n+3, n+4 contain three problems whose answers are TRUE and problems
n+ 1, n+ 2, n+ 3, n+ 4, n+ 5 contain three problems whose answers are TRUE. Note
that problems n + 1, n + 2, n + 3, n + 4 contain either 2 or 3 problems whose answers
are TRUE. In the former case, the answers to both problem n and problem n + 5 are
TRUE. In the latter case, the answers to both problem n and problem n+5 are FALSE.
In either case, problems n and n+ 5 have the same answer.

By this claim, problems {1, 6, 11, 16, . . . , 91, 96} have the same answers. So do {2, 7, 12,
17, . . . , 92, 97}, {3, 8, 13, 18, . . . , 93, 98}, {4, 9, 14, 19, . . . , 94, 99} and {5, 10, 15, 20, . . . , 95,
100}. For each of these five groups of problems, if we can determine the answer to one
problem in the group, we can determine the answers to every problem in the group. Since
the answer to problem 1 is FALSE, the answers to problems {1, 6, 11, 16, . . . , 91, 96}
are all FALSE. Since problem 100 is FALSE, then the answers to problems {5, 10, 15,
20, . . . , 95, 100} are also FALSE. Since problems 1 and 5 have answers FALSE, and

18
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exactly three of problems 1, 2, 3, 4, 5 have answer TRUE, problems 2, 3, 4 have answer
TRUE. Therefore, the answers to the remaining problems {2, 7, 12, 17, . . . , 92, 97}, {3, 8,
13, 18, . . . , 93, 98}, {4, 9, 14, 19, . . . , 94, 99} are all TRUE. Having determined the correct
answer to each question, Charlotte achieves a perfect score by answering FALSE, TRUE,
TRUE, TRUE, FALSE to the first five questions, and repeating this pattern for each
block of five consecutive questions.

Solution 2: As in Solution 1, problems {1, 6, 11, . . . , 96} and {5, 10, 15, . . . , 100} have
answers FALSE. There are 40 such problems. By part (a), 60 of the 100 problems have
answer TRUE. Therefore, the remaining 60 problems, mainly, {2, 7, . . . , 97}, {3, 8, . . . , 98}
and {4, 9, . . . , 99}, have answer FALSE.

Comment: An analogue solution to this solution is to define a variable xi for Problem i,
with xi = 1 if the answer to Problem i is TRUE and xi = 0 if the answer to Problem i is
FALSE. Then based on the information given we have the following system of equations:

xj + xj+1 + xj+2 + xj+3 + xj+4 = 3, ∀1 ≤ j ≤ 96

and x1 = 0 and x100 = 0. Charlotte needs to determine all xi where 1 ≤ i ≤ 100. Since
xj ∈ {0, 1}, solving this system of the equations yield

x1 = x6 = x11 = x16 = . . . = x91 = x96 = 0

x2 = x7 = x12 = x17 = . . . = x92 = x97 = 1

x3 = x8 = x13 = x18 = . . . = x93 = x98 = 1

x4 = x9 = x14 = x19 = . . . = x94 = x99 = 1

x5 = x10 = x15 = x20 = . . . = x95 = x100 = 0
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C3. Let n be a positive integer. A row of n + 1 squares is written from left to right, numbered
0, 1, 2, . . . , n, as shown.

· · ·0 1 2 n

Two frogs, named Alphonse and Beryl, begin a race starting at square 0. For each second
that passes, Alphonse and Beryl make a jump to the right according to the following rules: if
there are at least eight squares to the right of Alphonse, then Alphonse jumps eight squares
to the right. Otherwise, Alphonse jumps one square to the right. If there are at least seven
squares to the right of Beryl, then Beryl jumps seven squares to the right. Otherwise, Beryl
jumps one square to the right. Let A(n) and B(n) respectively denote the number of seconds
for Alphonse and Beryl to reach square n. For example, A(40) = 5 and B(40) = 10.

(a) Determine an integer n > 200 for which B(n) < A(n).

(b) Determine the largest integer n for which B(n) ≤ A(n).

Solution 1: Note that if we write n = 8q1 + r1 where q1, r1 are non-negative integers and
0 ≤ r1 < 8, then Alphonse performs q1 8-square jumps and r1 1-square jump. Then the
number of jumps Alphonse performs is A(n) = q1 + r1. Similarly, if we write n = 7q2 + r2
where q2, r2 are non-negative integers and 0 ≤ r2 < 7, then B(n) = q2 + r2.

(a) Since Alphonse’s 8-square jump is farther than Beryl’s 7-square jump, in order for Beryl
to finish faster than Alphonse, n must be an integer such that Beryl performs very few
1-square jumps and Alphonse performs many 1-square jumps, i.e. n should be an integer
that is divisible by 7 and has a high remainder upon division by 8, i.e. 7. Note that 7
is such an integer. Note that adding 7× 8 = 56 repeatedly to 7 preserves this property,
i.e. 63, 119, 175, 231. Since 231 = 33× 7, B(231) = 33. Since 231 = 28× 8+7, Alphonse
performs 28 + 7 = 35 jumps, i.e. A(231) = 35. Therefore, B(231) < A(231). Hence,
n = 231 is such a positive integer.

(b) Since B(n) ≤ A(n), we have q2+r2 ≤ q1+r1. Since 8q1+r1 = 7q2+r2 and r2 ≤ q1+r1−q2,

8q1 + r1 ≤ 7q2 + q1 + r1 − q2.

Equivalently, 7q1 ≤ 6q2. Therefore, q2 ≥ 7q1/6. Substituting this into 8q1+r1 = 7q2+r2
yields

8q1 + r1 ≥
49

6
q1 + r2.

Therefore,
q1
6

≤ r1 − r2.
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Since r1 ≤ 7 and r2 ≥ 0, r1 − r2 ≤ 7, which implies that q1 ≤ 42. Since r1 ≤ 7,
n = 8q1 + r1 ≤ 8× 42 + 7 = 343.

To prove that 343 is indeed the maximum, note that 343 = 42×8+7, which implies that
A(343) = 42 + 7 = 49. Also, note that 343 = 49 × 7, which implies that B(343) = 49.
Therefore, A(343) = B(343). Hence, n = 343 is the maximum positive integer such that
B(n) ≤ A(n).

Solution 2:

Using the notation in Solution 1, we have A(n) = q1 + r1 and B(n) = q2 + r2. Let ⌊x⌋ be the
greatest integer less than or equal to x. For example, ⌊23

8
⌋ = 2. Note that q = ⌊n/8⌋. Then

r = n− 8q = n− 8⌊n/8⌋. Hence, A(n)q + r = n− 7⌊n/8⌋. Similarly, B(n) = n− 6⌊n/7⌋.

(a) We seek an integer n > 200 for which B(n) = n − 6⌊n
7
⌋ < n − 7⌊n

8
⌋ = A(n), i.e.,

7⌊n
8
⌋ < 6⌊n

7
⌋. If we were to remove the floor notation, the inequality would reduce to

7n
8

< 6n
7
, which is not true. Thus, in order to achieve the inequality 7⌊n

8
⌋ < 6⌊n

7
⌋, we

want to make n
8
− ⌊n

8
⌋ as large as possible and n

7
− ⌊n

7
⌋ as small as possible. One way

to achieve this is to make n
8
just less than an integer, so that ⌊n

8
⌋ will be approximately

n
8
− 1, while ensuring that n

7
is equal to an integer, so that ⌊n

7
⌋ = n

7
.

Let n = 56k + 7, for some integer k > 0. Then ⌊n
8
⌋ = ⌊56k+7

8
⌋ = ⌊7k + 7

8
⌋ = 7k, and

⌊n
7
⌋ = ⌊56k+7

7
⌋ = 8k + 1. Then our inequality becomes 7 · 7k < 6 · (8k + 1), which is

equivalent to k < 6. For example, if k = 4, then n = 56 · 4 + 7 = 231 is an integer
satisfying 7⌊n

8
⌋ < 6⌊n

7
⌋, which implies that B(231) < A(231). Checking, we see that

A(231) = 231− 7⌊231
8
⌋ = 35 and B(231) = 231− 6⌊231

7
⌋ = 33. Thus, n = 231 is indeed

a solution to the problem. Another solution is n = 56 · 5 + 7 = 287, found by letting
k = 5. Other solutions include n = 238 and n = 239.

(b) For each positive integer n, there exist unique integers p, q, r for which n = 56p+8q+r,
where 0 ≤ q ≤ 6 and 0 ≤ r ≤ 7. The inequality B(n) ≤ A(n) is equivalent to
7⌊n

8
⌋ ≤ 6⌊n

7
⌋.

We have ⌊n
8
⌋ = ⌊56p+8q+r

8
⌋ = 7p+ q + ⌊ r

8
⌋ = 7p+ q, since 0 ≤ r ≤ 7. And also we have

⌊n
7
⌋ = ⌊56p+8q+r

7
⌋ = 8p+ q + ⌊ q+r

7
⌋.

Thus, the inequality 7⌊n
8
⌋ ≤ 6⌊n

7
⌋ is equivalent to 7(7p+ q) ≤ 6(8p+ q) + 6⌊ q+r

7
⌋, which

simplifies to p+ q ≤ 6⌊ q+r
7
⌋. Since q + r ≤ 6 + 7 = 13, we must have p+ q ≤ 6⌊13

7
⌋ = 6.

We wish to determine the largest integer n = 56p+8q+r for which the above inequality
is satisfied. To do this, we want to maximize p. Since p + q ≤ 6, let us first try p = 6.
Then this forces q = 0. This case satisfies the inequality p + q ≤ 6⌊ q+r

7
⌋ if and only if

21



COMC 2011 22

r = 7. We remark that the triplet (p, q, r) = (6, 0, 7) yields n = 56× 6 + 7 = 343 which
is indeed a solution because A(343) = 343−7⌊343

8
⌋ = 49 and B(343) = 343−6⌊343

7
⌋ = 49.

To show that n = 343 is indeed the largest value of n satisfying B(n) ≤ A(n), we note
that (p, q, r) = (6, 0, 7) is the only triplet satisfying the inequality for p = 6, from the
analysis above. And so any other solution must have p ≤ 5. But then such a solution
would have n = 56p+ 8q + r ≤ 56× 5 + 8× 6 + 7 = 335 < 343.
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C4. Let f(x) = x2 − ax+ b, where a and b are positive integers.

(a) Suppose a = 2 and b = 2. Determine the set of real roots of f(x)−x, and the set of real
roots of f(f(x))− x.

(b) Determine the number of pairs of positive integers (a, b) with 1 ≤ a, b ≤ 2011 for which
every root of f(f(x))− x is an integer.

Solution:

(a) If a = 2 and b = 2, then f(x) = x2−2x+2. Hence, f(x)−x = x2−3x+2 = (x−2)(x−1).
Therefore, the roots of f(x)− x are 1 and 2.

We now determine f(f(x)) − x. Note that f(f(x)) = (x2 − 2x+ 2)2 − 2(x2 − 2x+ 2) + 2 =
x4 − 4x3 + 6x2 − 4x+ 2. Therefore,

f(f(x))− x = x4 − 4x3 + 6x2 − 5x+ 2.

Note that 1 is a root of f(f(x))− x. Then

x4 − 4x3 + 6x2 − 5x+ 2 = (x− 1)(x3 − 3x2 + 3x− 2) = (x− 1)(x− 2)(x2 − x+ 1).

Note that x2−x+1 has no real roots since its discriminant is 12−4 ·1 ·1 = −3 < 0. Therefore,
the real roots of f(f(x))− x are 1 and 2.

(b) The answer is 43.

First, we claim that if r is a root of f(x)−x, then r is a root of f(f(x))−x. Since r is a root
of f(x)− x, f(r)− r = 0, i.e. f(r) = r. Therefore,

f(f(r))− r = f(r)− r = 0.

Hence, any root of f(x) − x is a root of f(f(x)) − x. Consequently, f(x) − x is a factor of
f(f(x))− x.

Note that f(f(x))− x = f(x2 − ax+ b)− x = (x2 − ax+ b)2 − a(x2 − ax+ b) + b− x,

= x4 − 2ax3 + (a2 + 2b− a)x2 − (2ab− a2 + 1)x+ (b2 − ab+ b).

Since f(x)− x = x2 − (a+ 1)x+ b, f(f(x))− x factors as

f(f(x))− x = (x2 − (a+ 1)x+ b)(x2 − (a− 1)x+ (b− a+ 1)).

Since both factors are monic, every root of f(f(x)) − x is an integer if and only if the
discriminants of both of these quadratic factors are perfect squares. These two discriminants
are

(a+ 1)2 − 4b = a2 + 2a+ 1− 4b
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and
(a− 1)2 − 4(b− a+ 1) = a2 + 2a+ 1− 4b− 4.

The first discriminant is four larger than the second discriminant. The only two perfect
squares that differ by 4 are 4 and 0. This statement is true since if r, s are non-negative integers
such that r2−s2 = 4, then (r−s)(r+s) = 4. Since r, s are non-negative, (r−s, r+s) = (2, 2)
or (1, 4). In the latter case, r − s = 1 and r + s = 4. Therefore, r = 5/2 and s = 3/2, which
are not integers. Therefore, (r − s, r + s) = (2, 2), i.e. r = 2, s = 0. Hence, the larger perfect
square is 22 = 4 and the smaller perfect square is 0.

Therefore, a2 + 2a+ 1− 4b = 4. Rearranging this and factoring yields

(a+ 1)2 = 4(b+ 1).

Since (a+1)2 and 4 are perfect squares, b+1 is a perfect square. Therefore, there exists a pos-
itive integer m such that b+1 = m2. Then b = m2 − 1. Consequently, (a+1)2 = 4m2. Since
a is a positive integer, a+ 1 = 2m. Hence, a = 2m− 1. Therefore, (a, b) = (2m− 1,m2 − 1).

We now verify that all such (a, b) have the property that the roots of x2 − (a + 1)x + b and
x2−(a−1)x+(b−a+1) are all integers, implying that every root of f(f(x))−x is an integer.
Substituting (a, b) = (2m− 1,m2 − 1) into these two polynomials yield x2 − 2mx+m2 − 1 =
(x−(m−1))(x−(m+1)) and x2−(2m−2)x+(m2−2m+1) = (x−(m−1))(x−(m−1)). Since
m is a positive integer, all four roots of f(f(x))−x is an integer. (Alternately, note that since
the leading coefficient of each of the quadratic factors is 1, the roots of the quadratic factors
are all integers if and only if the discriminant of the quadratic factors are both perfect square.)

Since 1 ≤ a, b ≤ 2011, it remains to find the number of positive integers m such that
1 ≤ 2m − 1,m2 − 1 ≤ 2011. Since 1 ≤ m2 − 1 ≤ 2011, 2 ≤ m2 ≤ 2012. Hence,
2 ≤ m ≤ ⌊

√
2012⌋ = 44, where ⌊t⌋ denotes the largest integer less than or equal to t.

There are 43 solutions for m, namely m = 2, 3, . . . 44. These values of m clearly satisfy
1 ≤ 2m− 1 ≤ 2011.

Therefore, the number of ordered positive integer pairs (a, b) that results in f(f(x))−x having
all integer roots is 43.
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