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1. Consider an arrangement of tokens in the plane, not necessarily at distinct points. We are allowed
to apply a sequence of moves of the following kind: Select a pair of tokens at points A and B and
move both of them to the midpoint of A and B.

We say that an arrangement of n tokens is collapsible if it is possible to end up with all n tokens at
the same point after a finite number of moves. Prove that every arrangement of n tokens is
collapsible if and only if n is a power of 2.

Solution. For a given positive integer n, consider an arrangement of n tokens in the plane, where
the tokens are at points A1, A2, . . . , An. Let G be the centroid of the n points, so as vectors (after
an arbitrary choice of origin),

−→
G =

−→
A 1 +

−→
A 2 + · · ·+

−→
An

n
.

Note that any move leaves the centroid G unchanged. Therefore, if all the tokens are eventually
moved to the same point, then this point must be G.

First we prove that if n = 2k for some nonnegative integer k, then all n tokens can always be
eventually moved to the same point. We shall use induction on k.

The result clearly holds for n = 20 = 1. Assume that it holds when n = 2k for some nonnegative
integer k. Consider a set of 2k+1 tokens at A1, A2, . . . , A2k+1 . Let Mi be the midpoint of A2i−1 and
A2i for 1 ≤ i ≤ 2k.

First we move the tokens at A2i−1 and A2i to Mi, for 1 ≤ i ≤ 2k. Then, there are two tokens at Mi

for all 1 ≤ i ≤ 2k. If we take one token from each of M1, M2, . . . , M2k , then by the induction
hypothesis, we can move all of them to the same point, say G. We can do the same with the
remaining tokens at M1, M2, . . . , M2k . Thus, all 2k+1 tokens are now at G, which completes the
induction argument.

(Here is an alternate approach to the induction step: Given the tokens at A1, A2, . . . , A2k+1 , move
the first 2k tokens to one point G1, and move the remaining 2k tokens to one point G2. Then 2k

more moves can bring all the tokens to the midpoint of G1 and G2.)
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Now, assume that n is not a power of 2. Take any line in the plane, and number it as a real number
line. (Henceforth, when we refer to a token at a real number, we mean with respect to this real
number line.)

At the start, place n− 1 tokens at 0 and one token at 1. We observed that if we can move all the
tokens to the same point, then it must be the centroid of the n points. Here, the centroid is at 1

n .

We now prove a lemma.

Lemma. The average of any two dyadic rationals is also a dyadic rational. (A dyadic rational is a
rational number that can be expressed in the form m

2a , where m is an integer and a is a nonnegative
integer.)

Proof. Consider two dyadic rationals m1
2a1 and m2

2a2 . Then their average is

1

2

(m1

2a1
+
m2

2a2

)
=

1

2

(
2a2 ·m1 + 2a1 ·m2

2a1 · 2a2

)
=

2a2 ·m1 + 2a1 ·m2

2a1+a2+1
,

which is another dyadic rational. �

On this real number line, a move corresponds to taking a token at x and a token at y and moving
both of them to x+y

2 , the average of x and y. At the start, every token is at a dyadic rational
(namely 0 or 1), which means that after any number of moves, every token must still be at a dyadic
rational.

But n is not a power of 2, so 1
n is not a dyadic rational. (Indeed, if we could express 1

n in dyadic
form m

2a , then we would have 2a = mn, which is impossible unless m and n are powers of 2.) This
means that it is not possible for any token to end up at 1

n , let alone all n tokens.

We conclude that we can always move all n tokens to the same point if and only if n is a power of 2.
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2. Let five points on a circle be labelled A, B, C, D, and E in clockwise order. Assume AE = DE and
let P be the intersection of AC and BD. Let Q be the point on the line through A and B such that
A is between B and Q and AQ = DP . Similarly, let R be the point on the line through C and D
such that D is between C and R and DR = AP . Prove that PE is perpendicular to QR.

Solution. We are given AQ = DP and AP = DR. Additionally
∠QAP = 180◦ − ∠BAC = 180◦ − ∠BDC = ∠RDP , and so triangles AQP and DPR are
congruent. Therefore PQ = PR. It follows that P is on the perpendicular bisector of QR.

We are also given AP = DR and AE = DE. Additionally
∠PAE = ∠CAE = 180◦ − ∠CDE = ∠RDE, and so triangles PAE and RDE are congruent.
Therefore PE = RE, and similarly PE = QE. It follows that E is on the perpendicular bisector of
PQ.

Since both P and E are on the perpendicular bisector of QR, the result follows.
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3. Two positive integers a and b are prime-related if a = pb or b = pa for some prime p. Find all
positive integers n, such that n has at least three divisors, and all the divisors can be arranged
without repetition in a circle so that any two adjacent divisors are prime-related.

Note that 1 and n are included as divisors.

Solution. We say that a positive integer is good if it has the given property. Let n be a good
number, and let d1, d2, . . . , dk be the divisors of n in the circle, in that order. Then for all
1 ≤ i ≤ k, di+1/di (taking the indices modulo k) is equal to either pi or 1/pi for some prime pi. In
other words, di+1/di = pεii , where εi ∈ {1,−1}. Then

pε11 p
ε2
2 · · · p

εk
k =

d2
d1
· d3
d2
· · · d1

dk
= 1.

For the product pε11 p
ε2
2 · · · p

εk
k to equal 1, any prime factor p must be paired with a factor of 1/p, and

vice versa, so k (the number of divisors of n) must be even. Hence, n cannot be a perfect square.

Furthermore, n cannot be the power of a prime (including a prime itself), because 1 always is a
divisor of n, and if n is a power of a prime, then the only divisor that can go next to 1 is the prime
itself.

Now, let n = paqb, where p and q are distinct primes, and a is odd. We write the divisors of n in a
grid as follows: In the first row, write the numbers 1, q, q2, . . . , qb. In the next row, write the
numbers p, pq, pq2, . . . , pqb, and so on. The number of rows in the grid, a+ 1, is even. Note that if
two squares are adjacent vertically or horizontally, then their corresponding numbers are
prime-related. We start with the square with a 1 in the upper-left corner. We then move right
along the first row, move down along the last column, move left along the last row, then zig-zag row
by row, passing through every square, until we land on the square with a p. The following diagram
gives the path for a = 3 and b = 5:

Thus, we can write the divisors encountered on this path in a circle, so n = paqb is good.

Next, assume that n is a good number. Let d1, d2, . . . , dk be the divisors of n in the circle, in that
order. Let p be a prime that does not divide n. We claim that n · pe is also a good number. We
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arrange the divisors of n · pe that are not divisors of n in a grid as follows:

d1p d1p
2 · · · d1p

e

d2p d2p
2 · · · d2p

e

...
...

. . .
...

dkp dkp
2 · · · dkp

e

Note that if two squares are adjacent vertically or horizontally, then their corresponding numbers
are prime-related. Also, k (the number of rows) is the number of factors of n, which must be even
(since n is good). Hence, we can use the same path described above, which starts at d1p and ends
at d2p. Since d1 and d2 are adjacent divisors in the circle for n, we can insert all the divisors in the
grid above between d1 and d2, to obtain a circle for n · pe.
Finally, let n be a positive integer that is neither a perfect square nor a power of a prime. Let the
prime factorization of n be

n = pe11 p
e2
2 · · · p

et
t .

Since n is not the power of a prime, t ≥ 2. Also, since n is not a perfect square, at least one
exponent ei is odd. Without loss of generality, assume that e1 is odd. Then from our work above,
pe11 p

e2
2 is good, so pe11 p

e2
2 p

e3
3 is good, and so on, until n = pe11 p

e2
2 · · · p

et
t is good.

Therefore, a positive integer n has the given property if and only if it is neither a perfect square nor
a power of a prime.
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4. Find all polynomials p(x) with real coefficients that have the following property: There exists a
polynomial q(x) with real coefficients such that

p(1) + p(2) + p(3) + · · ·+ p(n) = p(n)q(n)

for all positive integers n.

Solution. The property clearly holds whenever p(x) is a constant polynomial, since we can take
q(x) = x. Assume henceforth that p(x) is nonconstant and has the stated property. Let d be the
degree of p(x), so p(x) is of the form

p(x) = cxd + · · · .

By a Lemma (which we will prove at the end),
∑n

k=1 k
d is a polynomial in n of degree d+ 1, so

p(1) + p(2) + · · ·+ p(n) is a polynomial in n of degree d+ 1. Hence, q(n) is a polynomial of degree
1. Furthermore, the coefficient of nd+1 in

∑n
k=1 k

d is 1
d+1 , so the coefficient of n in q(n) is also 1

d+1 .

Let q(x) = 1
d+1(x+ r). We have that

p(1) + p(2) + p(3) + · · ·+ p(n) = p(n)q(n)

and
p(1) + p(2) + p(3) + · · ·+ p(n) + p(n+ 1) = p(n+ 1)q(n+ 1).

Subtracting the first equation from the second, we get

p(n+ 1) = p(n+ 1)q(n+ 1)− p(n)q(n),

and hence
p(n)q(n) = p(n+ 1)[q(n+ 1)− 1].

Since this holds for all positive integers n, it follows that

p(x)q(x) = p(x+ 1)[q(x+ 1)− 1]

for all real numbers x. We can then write

p(x) · 1

d+ 1
(x+ r) = p(x+ 1)

[
1

d+ 1
(x+ r + 1)− 1

]
,

so
(x+ r)p(x) = (x+ r − d)p(x+ 1). (∗)

Setting x = −r, we get
(−d)p(−r + 1) = 0.

Hence, −r + 1 is a root of p(x). Let p(x) = (x+ r − 1)p1(x). Then

(x+ r)(x+ r − 1)p1(x) = (x+ r − d)(x+ r)p1(x+ 1),

so
(x+ r − 1)p1(x) = (x+ r − d)p1(x+ 1).

If d = 1, then p1(x) is a constant, so both sides are equal, and we can say p(x) = c(x+ r − 1).
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Otherwise, setting x = −r + 1, we get

(1− d)p1(−r + 2) = 0.

Hence, −r + 2 is a root of p1(x). Let p1(x) = (x+ r − 2)p2(x). Then

(x− r − 1)(x+ r − 2)p2(x) = (x+ r − d)(x+ r − 1)p2(x+ 1),

so
(x+ r − 2)p2(x) = (x+ r − d)p2(x+ 1).

If d = 2, then p2(x) is a constant, so both sides are equal, and we can say
p(x) = c(x+ r − 1)(x+ r − 2).

Otherwise, we can continue to substitute, giving us

p(x) = c(x+ r − 1)(x+ r − 2) · · · (x+ r − d).

Conversely, if p(x) is of this form, then

p(x) = c(x+ r − 1)(x+ r − 2) · · · (x+ r − d)

=
c(d+ 1)(x+ r − 1)(x+ r − 2) · · · (x+ r − d)

d+ 1

=
c[(x+ r)− (x+ r − d− 1)](x+ r − 1)(x+ r − 2) · · · (x+ r − d)

d+ 1

=
c(x+ r)(x+ r − 1)(x+ r − 2) · · · (x+ r − d)

d+ 1

− c(x+ r − 1)(x+ r − 2) · · · (x+ r − d)(x+ r − d− 1)

d+ 1
.

Then the sum p(1) + p(2) + p(3) + · · ·+ p(n) telescopes, and we are left with

p(1) + p(2) + p(3) + · · ·+ p(n) =
c(n+ r)(n+ r − 1)(n+ r − 2) · · · (n+ r − d)

d+ 1

− c(r)(r − 1) · · · (r − d+ 1)(r − d)

d+ 1
.

We want this to be of the form

p(n)q(n) = c(n+ r − 1)(n+ r − 2) · · · (n+ r − d)q(n)

for some polynomial q(n). The only way that this can hold for each positive integer n is if the term

c(r)(r − 1) · · · (r − d+ 1)(r − d)

d+ 1

is equal to 0. This means r has to be one of the values 0, 1, 2, . . . , d. Therefore, the polynomials we
seek are of the form

p(x) = c(x+ r − 1)(x+ r − 2) · · · (x+ r − d),
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where r ∈ {0, 1, 2, . . . , d}.

Lemma. For a positive integer d,
n∑
k=1

kd

is a polynomial in n of degree d+ 1. Furthermore, the coefficient of nd+1 is 1
d+1 .

Proof. We prove the result by strong induction. For d = 1,

n∑
k=1

k =
1

2
n2 +

1

2
n,

so the result holds. Assume that the result holds for d = 1, 2, 3, . . . , m, for some positive integer m.

By the Binomial Theorem,

(k + 1)m+2 − km+2 = (m+ 2)km+1 + cmk
m + cm−1k

m−1 + · · ·+ c1k + c0,

for some coefficients cm, cm−1, . . . , c1, c0. Summing over 1 ≤ k ≤ n, we get

(n+ 1)m+2 − 1 = (m+ 2)

n∑
k=1

km+1 + cm

n∑
k=1

km + · · ·+ c1

n∑
k=1

k + c0n.

Then
n∑
k=1

km+1 =
(n+ 1)m+2 − cm

∑n
k=1 k

m − · · · − c1
∑n

k=1 k − c0n− 1

m+ 2
.

By the induction hypothesis, the sums
∑n

k=1 k
m, . . . ,

∑n
k=1 k are all polynomials in n of degree less

than m+ 2. Hence, the above expression is a polynomial in n of degree m+ 2, and the coefficient of
nm+2 is 1

m+2 . Thus, the result holds for d = m+ 1, which completes the induction step. �
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5. Let k be a given even positive integer. Sarah first picks a positive integer N greater than 1 and
proceeds to alter it as follows: every minute, she chooses a prime divisor p of the current value of
N , and multiplies the current N by pk − p−1 to produce the next value of N . Prove that there are
infinitely many even positive integers k such that, no matter what choices Sarah makes, her number
N will at some point be divisible by 2018.

Solution: Note that 1009 is prime. We will show that if k = 1009m − 1 for some positive integer
m, then Sarah’s number must at some point be divisible by 2018. Let P be the largest divisor of N
not divisible by a prime congruent to 1 modulo 1009. Assume for contradiction that N is never
divisible by 2018. We will show that P decreases each minute. Suppose that in the tth minute,

Sarah chooses the prime divisor p of N . First note that N is replaced with pk+1−1
p ·N where

pk+1 − 1 = p1009
m − 1 = (p− 1)

(
p1009

m−1 + p1009
m−2 + · · ·+ 1

)
Suppose that q is a prime number dividing the second factor. Since q divides p1009

m − 1, it follows
that q 6= p and the order of p modulo q must divide 1009m and hence is either divisible by 1009 or
is equal to 1. If it is equal to 1 then p ≡ 1 (mod q), which implies that

0 ≡ p1009m−1 + p1009
m−2 + · · ·+ 1 ≡ 1009m (mod q)

and thus q = 1009. However, if q = 1009 then p ≥ 1010 and p must be odd. Since p− 1 now divides
N , it follows that N is divisible by 2018 in the (t+ 1)th minute, which is a contradiction. Therefore
the order of p modulo q is divisible by 1009 and hence 1009 divides q− 1. Therefore all of the prime
divisors of the second factor are congruent to 1 modulo 1009. This implies that P is replaced by a
divisor of p−1

p · P in the (t+ 1)th minute and therefore decreases. Since P ≥ 1 must always hold, P
cannot decrease forever. Therefore N must at some point be divisible by 2018.

Remark (no credit). If k is allowed to be odd, then choosing k+ 1 to be divisible by φ(1009) = 1008
guarantees that Sarah’s number will be divisible by 2018 the first time it is even, which is after
either the first or second minute.
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