Canadian Mathematical Olympiad 2018

Official Solutions

1. Consider an arrangement of tokens in the plane, not necessarily at distinct points. We are allowed to apply a sequence of moves of the following kind: Select a pair of tokens at points A and B and move both of them to the midpoint of A and B.
We say that an arrangement of n tokens is collapsible if it is possible to end up with all n tokens at the same point after a finite number of moves. Prove that every arrangement of n tokens is collapsible if and only if n is a power of 2 .

Solution. For a given positive integer n, consider an arrangement of n tokens in the plane, where the tokens are at points $A_{1}, A_{2}, \ldots, A_{n}$. Let G be the centroid of the n points, so as vectors (after an arbitrary choice of origin),

$$
\vec{G}=\frac{\vec{A}_{1}+\vec{A}_{2}+\cdots+\vec{A}_{n}}{n}
$$

Note that any move leaves the centroid G unchanged. Therefore, if all the tokens are eventually moved to the same point, then this point must be G.
First we prove that if $n=2^{k}$ for some nonnegative integer k, then all n tokens can always be eventually moved to the same point. We shall use induction on k.
The result clearly holds for $n=2^{0}=1$. Assume that it holds when $n=2^{k}$ for some nonnegative integer k. Consider a set of 2^{k+1} tokens at $A_{1}, A_{2}, \ldots, A_{2^{k+1}}$. Let M_{i} be the midpoint of $A_{2 i-1}$ and $A_{2 i}$ for $1 \leq i \leq 2^{k}$.
First we move the tokens at $A_{2 i-1}$ and $A_{2 i}$ to M_{i}, for $1 \leq i \leq 2^{k}$. Then, there are two tokens at M_{i} for all $1 \leq i \leq 2^{k}$. If we take one token from each of $M_{1}, M_{2}, \ldots, M_{2^{k}}$, then by the induction hypothesis, we can move all of them to the same point, say G. We can do the same with the remaining tokens at $M_{1}, M_{2}, \ldots, M_{2^{k}}$. Thus, all 2^{k+1} tokens are now at G, which completes the induction argument.
(Here is an alternate approach to the induction step: Given the tokens at $A_{1}, A_{2}, \ldots, A_{2^{k+1}}$, move the first 2^{k} tokens to one point G_{1}, and move the remaining 2^{k} tokens to one point G_{2}. Then 2^{k} more moves can bring all the tokens to the midpoint of G_{1} and G_{2}.)

Presented by the Canadian Mathematical Society and supported by the Actuarial Profession.

Now, assume that n is not a power of 2 . Take any line in the plane, and number it as a real number line. (Henceforth, when we refer to a token at a real number, we mean with respect to this real number line.)

At the start, place $n-1$ tokens at 0 and one token at 1 . We observed that if we can move all the tokens to the same point, then it must be the centroid of the n points. Here, the centroid is at $\frac{1}{n}$.
We now prove a lemma.
Lemma. The average of any two dyadic rationals is also a dyadic rational. (A dyadic rational is a rational number that can be expressed in the form $\frac{m}{2^{a}}$, where m is an integer and a is a nonnegative integer.)

Proof. Consider two dyadic rationals $\frac{m_{1}}{2^{a_{1}}}$ and $\frac{m_{2}}{2^{a_{2}}}$. Then their average is

$$
\frac{1}{2}\left(\frac{m_{1}}{2^{a_{1}}}+\frac{m_{2}}{2^{a_{2}}}\right)=\frac{1}{2}\left(\frac{2^{a_{2}} \cdot m_{1}+2^{a_{1}} \cdot m_{2}}{2^{a_{1}} \cdot 2^{a_{2}}}\right)=\frac{2^{a_{2}} \cdot m_{1}+2^{a_{1}} \cdot m_{2}}{2^{a_{1}+a_{2}+1}}
$$

which is another dyadic rational.
On this real number line, a move corresponds to taking a token at x and a token at y and moving both of them to $\frac{x+y}{2}$, the average of x and y. At the start, every token is at a dyadic rational (namely 0 or 1), which means that after any number of moves, every token must still be at a dyadic rational.
But n is not a power of 2 , so $\frac{1}{n}$ is not a dyadic rational. (Indeed, if we could express $\frac{1}{n}$ in dyadic form $\frac{m}{2^{a}}$, then we would have $2^{a}=m n$, which is impossible unless m and n are powers of 2.) This means that it is not possible for any token to end up at $\frac{1}{n}$, let alone all n tokens.
We conclude that we can always move all n tokens to the same point if and only if n is a power of 2 .
2. Let five points on a circle be labelled A, B, C, D, and E in clockwise order. Assume $A E=D E$ and let P be the intersection of $A C$ and $B D$. Let Q be the point on the line through A and B such that A is between B and Q and $A Q=D P$. Similarly, let R be the point on the line through C and D such that D is between C and R and $D R=A P$. Prove that $P E$ is perpendicular to $Q R$.

Solution. We are given $A Q=D P$ and $A P=D R$. Additionally $\angle Q A P=180^{\circ}-\angle B A C=180^{\circ}-\angle B D C=\angle R D P$, and so triangles $A Q P$ and $D P R$ are congruent. Therefore $P Q=P R$. It follows that P is on the perpendicular bisector of $Q R$.
We are also given $A P=D R$ and $A E=D E$. Additionally
$\angle P A E=\angle C A E=180^{\circ}-\angle C D E=\angle R D E$, and so triangles $P A E$ and $R D E$ are congruent.
Therefore $P E=R E$, and similarly $P E=Q E$. It follows that E is on the perpendicular bisector of $P Q$.
Since both P and E are on the perpendicular bisector of $Q R$, the result follows.
3. Two positive integers a and b are prime-related if $a=p b$ or $b=p a$ for some prime p. Find all positive integers n, such that n has at least three divisors, and all the divisors can be arranged without repetition in a circle so that any two adjacent divisors are prime-related.
Note that 1 and n are included as divisors.
Solution. We say that a positive integer is good if it has the given property. Let n be a good number, and let $d_{1}, d_{2}, \ldots, d_{k}$ be the divisors of n in the circle, in that order. Then for all $1 \leq i \leq k, d_{i+1} / d_{i}$ (taking the indices modulo k) is equal to either p_{i} or $1 / p_{i}$ for some prime p_{i}. In other words, $d_{i+1} / d_{i}=p_{i}^{\epsilon_{i}}$, where $\epsilon_{i} \in\{1,-1\}$. Then

$$
p_{1}^{\epsilon_{1}} p_{2}^{\epsilon_{2}} \cdots p_{k}^{\epsilon_{k}}=\frac{d_{2}}{d_{1}} \cdot \frac{d_{3}}{d_{2}} \cdots \frac{d_{1}}{d_{k}}=1
$$

For the product $p_{1}^{\epsilon_{1}} p_{2}^{\epsilon_{2}} \cdots p_{k}^{\epsilon_{k}}$ to equal 1 , any prime factor p must be paired with a factor of $1 / p$, and vice versa, so k (the number of divisors of n) must be even. Hence, n cannot be a perfect square.
Furthermore, n cannot be the power of a prime (including a prime itself), because 1 always is a divisor of n, and if n is a power of a prime, then the only divisor that can go next to 1 is the prime itself.
Now, let $n=p^{a} q^{b}$, where p and q are distinct primes, and a is odd. We write the divisors of n in a grid as follows: In the first row, write the numbers $1, q, q^{2}, \ldots, q^{b}$. In the next row, write the numbers $p, p q, p q^{2}, \ldots, p q^{b}$, and so on. The number of rows in the grid, $a+1$, is even. Note that if two squares are adjacent vertically or horizontally, then their corresponding numbers are prime-related. We start with the square with a 1 in the upper-left corner. We then move right along the first row, move down along the last column, move left along the last row, then zig-zag row by row, passing through every square, until we land on the square with a p. The following diagram gives the path for $a=3$ and $b=5$:

Thus, we can write the divisors encountered on this path in a circle, so $n=p^{a} q^{b}$ is good.
Next, assume that n is a good number. Let $d_{1}, d_{2}, \ldots, d_{k}$ be the divisors of n in the circle, in that order. Let p be a prime that does not divide n. We claim that $n \cdot p^{e}$ is also a good number. We
arrange the divisors of $n \cdot p^{e}$ that are not divisors of n in a grid as follows:

$$
\begin{array}{cccc}
d_{1} p & d_{1} p^{2} & \cdots & d_{1} p^{e} \\
d_{2} p & d_{2} p^{2} & \cdots & d_{2} p^{e} \\
\vdots & \vdots & \ddots & \vdots \\
d_{k} p & d_{k} p^{2} & \cdots & d_{k} p^{e}
\end{array}
$$

Note that if two squares are adjacent vertically or horizontally, then their corresponding numbers are prime-related. Also, k (the number of rows) is the number of factors of n, which must be even (since n is good). Hence, we can use the same path described above, which starts at $d_{1} p$ and ends at $d_{2} p$. Since d_{1} and d_{2} are adjacent divisors in the circle for n, we can insert all the divisors in the grid above between d_{1} and d_{2}, to obtain a circle for $n \cdot p^{e}$.

Finally, let n be a positive integer that is neither a perfect square nor a power of a prime. Let the prime factorization of n be

$$
n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{t}^{e_{t}} .
$$

Since n is not the power of a prime, $t \geq 2$. Also, since n is not a perfect square, at least one exponent e_{i} is odd. Without loss of generality, assume that e_{1} is odd. Then from our work above, $p_{1}^{e_{1}} p_{2}^{e_{2}}$ is good, so $p_{1}^{e_{1}} p_{2}^{e_{2}} p_{3}^{e_{3}}$ is good, and so on, until $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{t}^{e_{t}}$ is good.
Therefore, a positive integer n has the given property if and only if it is neither a perfect square nor a power of a prime.
4. Find all polynomials $p(x)$ with real coefficients that have the following property: There exists a polynomial $q(x)$ with real coefficients such that

$$
p(1)+p(2)+p(3)+\cdots+p(n)=p(n) q(n)
$$

for all positive integers n.
Solution. The property clearly holds whenever $p(x)$ is a constant polynomial, since we can take $q(x)=x$. Assume henceforth that $p(x)$ is nonconstant and has the stated property. Let d be the degree of $p(x)$, so $p(x)$ is of the form

$$
p(x)=c x^{d}+\cdots .
$$

By a Lemma (which we will prove at the end), $\sum_{k=1}^{n} k^{d}$ is a polynomial in n of degree $d+1$, so $p(1)+p(2)+\cdots+p(n)$ is a polynomial in n of degree $d+1$. Hence, $q(n)$ is a polynomial of degree 1. Furthermore, the coefficient of n^{d+1} in $\sum_{k=1}^{n} k^{d}$ is $\frac{1}{d+1}$, so the coefficient of n in $q(n)$ is also $\frac{1}{d+1}$. Let $q(x)=\frac{1}{d+1}(x+r)$. We have that

$$
p(1)+p(2)+p(3)+\cdots+p(n)=p(n) q(n)
$$

and

$$
p(1)+p(2)+p(3)+\cdots+p(n)+p(n+1)=p(n+1) q(n+1) .
$$

Subtracting the first equation from the second, we get

$$
p(n+1)=p(n+1) q(n+1)-p(n) q(n)
$$

and hence

$$
p(n) q(n)=p(n+1)[q(n+1)-1] .
$$

Since this holds for all positive integers n, it follows that

$$
p(x) q(x)=p(x+1)[q(x+1)-1]
$$

for all real numbers x. We can then write

$$
p(x) \cdot \frac{1}{d+1}(x+r)=p(x+1)\left[\frac{1}{d+1}(x+r+1)-1\right],
$$

so

$$
\begin{equation*}
(x+r) p(x)=(x+r-d) p(x+1) \tag{*}
\end{equation*}
$$

Setting $x=-r$, we get

$$
(-d) p(-r+1)=0 .
$$

Hence, $-r+1$ is a root of $p(x)$. Let $p(x)=(x+r-1) p_{1}(x)$. Then

$$
(x+r)(x+r-1) p_{1}(x)=(x+r-d)(x+r) p_{1}(x+1),
$$

so

$$
(x+r-1) p_{1}(x)=(x+r-d) p_{1}(x+1) .
$$

If $d=1$, then $p_{1}(x)$ is a constant, so both sides are equal, and we can say $p(x)=c(x+r-1)$.

Otherwise, setting $x=-r+1$, we get

$$
(1-d) p_{1}(-r+2)=0
$$

Hence, $-r+2$ is a root of $p_{1}(x)$. Let $p_{1}(x)=(x+r-2) p_{2}(x)$. Then

$$
(x-r-1)(x+r-2) p_{2}(x)=(x+r-d)(x+r-1) p_{2}(x+1)
$$

so

$$
(x+r-2) p_{2}(x)=(x+r-d) p_{2}(x+1)
$$

If $d=2$, then $p_{2}(x)$ is a constant, so both sides are equal, and we can say $p(x)=c(x+r-1)(x+r-2)$.
Otherwise, we can continue to substitute, giving us

$$
p(x)=c(x+r-1)(x+r-2) \cdots(x+r-d)
$$

Conversely, if $p(x)$ is of this form, then

$$
\begin{aligned}
p(x)= & c(x+r-1)(x+r-2) \cdots(x+r-d) \\
= & \frac{c(d+1)(x+r-1)(x+r-2) \cdots(x+r-d)}{d+1} \\
= & \frac{c[(x+r)-(x+r-d-1)](x+r-1)(x+r-2) \cdots(x+r-d)}{d+1} \\
= & \frac{c(x+r)(x+r-1)(x+r-2) \cdots(x+r-d)}{d+1} \\
& -\frac{c(x+r-1)(x+r-2) \cdots(x+r-d)(x+r-d-1)}{d+1} .
\end{aligned}
$$

Then the sum $p(1)+p(2)+p(3)+\cdots+p(n)$ telescopes, and we are left with

$$
\begin{aligned}
p(1)+p(2)+p(3)+\cdots+p(n)= & \frac{c(n+r)(n+r-1)(n+r-2) \cdots(n+r-d)}{d+1} \\
& -\frac{c(r)(r-1) \cdots(r-d+1)(r-d)}{d+1}
\end{aligned}
$$

We want this to be of the form

$$
p(n) q(n)=c(n+r-1)(n+r-2) \cdots(n+r-d) q(n)
$$

for some polynomial $q(n)$. The only way that this can hold for each positive integer n is if the term

$$
\frac{c(r)(r-1) \cdots(r-d+1)(r-d)}{d+1}
$$

is equal to 0 . This means r has to be one of the values $0,1,2, \ldots, d$. Therefore, the polynomials we seek are of the form

$$
p(x)=c(x+r-1)(x+r-2) \cdots(x+r-d)
$$

where $r \in\{0,1,2, \ldots, d\}$.

Lemma. For a positive integer d,

$$
\sum_{k=1}^{n} k^{d}
$$

is a polynomial in n of degree $d+1$. Furthermore, the coefficient of n^{d+1} is $\frac{1}{d+1}$.
Proof. We prove the result by strong induction. For $d=1$,

$$
\sum_{k=1}^{n} k=\frac{1}{2} n^{2}+\frac{1}{2} n
$$

so the result holds. Assume that the result holds for $d=1,2,3, \ldots, m$, for some positive integer m. By the Binomial Theorem,

$$
(k+1)^{m+2}-k^{m+2}=(m+2) k^{m+1}+c_{m} k^{m}+c_{m-1} k^{m-1}+\cdots+c_{1} k+c_{0}
$$

for some coefficients $c_{m}, c_{m-1}, \ldots, c_{1}, c_{0}$. Summing over $1 \leq k \leq n$, we get

$$
(n+1)^{m+2}-1=(m+2) \sum_{k=1}^{n} k^{m+1}+c_{m} \sum_{k=1}^{n} k^{m}+\cdots+c_{1} \sum_{k=1}^{n} k+c_{0} n
$$

Then

$$
\sum_{k=1}^{n} k^{m+1}=\frac{(n+1)^{m+2}-c_{m} \sum_{k=1}^{n} k^{m}-\cdots-c_{1} \sum_{k=1}^{n} k-c_{0} n-1}{m+2}
$$

By the induction hypothesis, the sums $\sum_{k=1}^{n} k^{m}, \ldots, \sum_{k=1}^{n} k$ are all polynomials in n of degree less than $m+2$. Hence, the above expression is a polynomial in n of degree $m+2$, and the coefficient of n^{m+2} is $\frac{1}{m+2}$. Thus, the result holds for $d=m+1$, which completes the induction step.
5. Let k be a given even positive integer. Sarah first picks a positive integer N greater than 1 and proceeds to alter it as follows: every minute, she chooses a prime divisor p of the current value of N, and multiplies the current N by $p^{k}-p^{-1}$ to produce the next value of N. Prove that there are infinitely many even positive integers k such that, no matter what choices Sarah makes, her number N will at some point be divisible by 2018.

Solution: Note that 1009 is prime. We will show that if $k=1009^{m}-1$ for some positive integer m, then Sarah's number must at some point be divisible by 2018. Let P be the largest divisor of N not divisible by a prime congruent to 1 modulo 1009. Assume for contradiction that N is never divisible by 2018. We will show that P decreases each minute. Suppose that in the $t^{\text {th }}$ minute, Sarah chooses the prime divisor p of N. First note that N is replaced with $\frac{p^{k+1}-1}{p} \cdot N$ where

$$
p^{k+1}-1=p^{1009^{m}}-1=(p-1)\left(p^{1009^{m}-1}+p^{1009^{m}-2}+\cdots+1\right)
$$

Suppose that q is a prime number dividing the second factor. Since q divides $p^{1009^{m}}-1$, it follows that $q \neq p$ and the order of p modulo q must divide 1009^{m} and hence is either divisible by 1009 or is equal to 1 . If it is equal to 1 then $p \equiv 1(\bmod q)$, which implies that

$$
0 \equiv p^{1009^{m}-1}+p^{1009^{m}-2}+\cdots+1 \equiv 1009^{m} \quad(\bmod q)
$$

and thus $q=1009$. However, if $q=1009$ then $p \geq 1010$ and p must be odd. Since $p-1$ now divides N, it follows that N is divisible by 2018 in the $(t+1)^{\text {th }}$ minute, which is a contradiction. Therefore the order of p modulo q is divisible by 1009 and hence 1009 divides $q-1$. Therefore all of the prime divisors of the second factor are congruent to 1 modulo 1009. This implies that P is replaced by a divisor of $\frac{p-1}{p} \cdot P$ in the $(t+1)^{\text {th }}$ minute and therefore decreases. Since $P \geq 1$ must always hold, P cannot decrease forever. Therefore N must at some point be divisible by 2018 .

Remark (no credit). If k is allowed to be odd, then choosing $k+1$ to be divisible by $\phi(1009)=1008$ guarantees that Sarah's number will be divisible by 2018 the first time it is even, which is after either the first or second minute.

