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Problems and Solutions

1. Determine all polynomials P (x) with real coefficients such that

(x + 1)P (x− 1)− (x− 1)P (x)

is a constant polynomial.

Solution 1: The answer is P (x) being any constant polynomial and P (x) ≡
kx2 + kx + c for any (nonzero) constant k and constant c.

Let Λ be the expression (x + 1)P (x− 1)− (x− 1)P (x), i.e. the expression in the
problem statement.

Substituting x = −1 into Λ yields 2P (−1) and substituting x = 1 into Λ yield
2P (0). Since (x+1)P (x−1)−(x−1)P (x) is a constant polynomial, 2P (−1) = 2P (0).
Hence, P (−1) = P (0).

Let c = P (−1) = P (0) and Q(x) = P (x) − c. Then Q(−1) = Q(0) = 0. Hence,
0,−1 are roots of Q(x). Consequently, Q(x) = x(x+1)R(x) for some polynomial R.
Then P (x)− c = x(x + 1)R(x), or equivalently, P (x) = x(x + 1)R(x) + c.

Substituting this into Λ yield

(x + 1)((x− 1)xR(x− 1) + c)− (x− 1)(x(x + 1)R(x) + c)

This is a constant polynomial and simplifies to

x(x− 1)(x + 1)(R(x− 1)−R(x)) + 2c.



Since this expression is a constant, so is x(x−1)(x+1)(R(x−1)−R(x)). Therefore,
R(x − 1) − R(x) = 0 as a polynomial. Therefore, R(x) = R(x − 1) for all x ∈ R.
Then R(x) is a polynomial that takes on certain values for infinitely values of x.
Let k be such a value. Then R(x) − k has infinitely many roots, which can occur
if and only if R(x) − k = 0. Therefore, R(x) is identical to a constant k. Hence,
Q(x) = kx(x+1) for some constant k. Therefore, P (x) = kx(x+1)+c = kx2+kx+c.

Finally, we verify that all such P (x) = kx(x + 1) + c work. Substituting this into
Λ yield

(x + 1)(kx(x− 1) + c)− (x− 1)(kx(x + 1) + c)
= kx(x + 1)(x− 1) + c(x + 1)− kx(x + 1)(x− 1)− c(x− 1) = 2c.

Hence, P (x) = kx(x + 1) + c = kx2 + kx + c is a solution to the given equation
for any constant k. Note that this solution also holds for k = 0. Hence, constant
polynomials are also solutions to this equation. ¤

Solution 2: As in Solution 1, any constant polynomial P satisfies the given
property. Hence, we will assume that P is not a constant polynomial.

Let n be the degree of P . Since P is not constant, n ≥ 1. Let

P (x) =
n∑

i=0

aix
i,

with an 6= 0. Then

(x + 1)
n∑

i=0

ai(x− 1)i − (x− 1)
n∑

i=0

aix
i = C,

for some constant C. We will compare the coefficient of xn of the left-hand side of
this equation with the right-hand side. Since C is a constant and n ≥ 1, the coeffi-
cient of xn of the right-hand side is equal to zero. We now determine the coefficient
of xn of the left-hand side of this expression.

The left-hand side of the equation simplifies to

x

n∑
i=0

ai(x− 1)i +
n∑

i=0

ai(x− 1)i − x

n∑
i=0

aix
i +

n∑
i=0

aix
i.



We will determine the coefficient xn of each of these four terms.

By the Binomial Theorem, the coefficient of xn of the first term is equal to that
of x (an−1(x− 1)n−1 + an(x− 1)n) = an−1 −

(
n

n−1

)
an = an−1 − nan.

The coefficient of xn of the second term is equal to that of an(x−1)n, which is an.

The coefficient of xn of the third term is equal to an−1 and that of the fourth
term is equal to an.

Summing these four coefficients yield an−1 − nan + an − an−1 + an = (2− n)an.

This expression is equal to 0. Since an 6= 0, n = 2. Hence, P is a quadratic
polynomial.

Let P (x) = ax2 + bx + c, where a, b, c are real numbers with a 6= 0. Then

(x + 1)(a(x− 1)2 + b(x− 1) + c)− (x− 1)(ax2 + bx + c) = C.

Simplifying the left-hand side yields

(b− a)x + 2c = 2C.

Therefore, b − a = 0 and 2c = 2C. Hence, P (x) = ax2 + ax + c. As in Solution 1,
this is a valid solution for all a ∈ R\{0}. ¤



2. The sequence a1, a2, . . . , an consists of the numbers 1, 2, . . . , n in some order. For
which positive integers n is it possible that 0, a1, a1 + a2, . . . , a1 + a2 + . . . + an all
have different remainders when divided by n + 1?

Solution: It is possible if and only if n is odd.

If n is even, then a1 + a2 + . . . + an = 1 + 2 + . . . + n = n
2
· (n + 1), which is

congruent to 0 mod n + 1. Therefore, the task is impossible.

Now suppose n is odd. We will show that we can construct a1, a2, . . . , an that sat-
isfy the conditions given in the problem. Then let n = 2k + 1 for some non-negative
integer k. Consider the sequence: 1, 2k, 3, 2k− 2, 5, 2k− 3, . . . , 2, 2k +1, i.e. for each
1 ≤ i ≤ 2k + 1, ai = i if i is odd and ai = 2k + 2− i if i is even.

We first show that each term 1, 2, . . . , 2k +1 appears exactly once. Clearly, there
are 2k + 1 terms. For each odd number m in {1, 2, . . . , 2k + 1}, am = m. For each
even number m in this set, a2k+2−m = 2k + 2 − (2k + 2 − m) = m. Hence, every
number appears in a1, . . . , a2k+1. Hence, a1, . . . , a2k+1 does consist of the numbers
1, 2, . . . , 2k + 1 in some order.

We now determine a1 + a2 + . . . + am (mod 2k + 2). We will consider the cases
when m is odd and when m is even separately. Let bm = a1 + a2 . . . + am.

If m is odd, note that a1 ≡ 1 (mod 2k + 2), a2 + a3 = a4 + a5 = . . . = a2k +
a2k+1 = 2k + 3 ≡ 1 (mod 2k + 2). Therefore, {b1, b3, . . . , b2k+1} = {1, 2, 3, . . . , k + 1}
(mod 2k + 2).

If m is even, note that a1 + a2 = a3 + a4 = . . . = a2k−1 + a2k = 2k + 1 ≡ −1
(mod 2k + 2). Therefore, {b2, b4, . . . , b2k} = {−1,−2, . . . ,−k} (mod 2k + 2) ≡
{2k + 1, 2k, . . . , k + 2} (mod 2k + 2).

Therefore, b1, b2, . . . , b2k+1 do indeed have different remainders when divided by
2k + 2. This completes the problem. ¤



3. Let G be the centroid of a right-angled triangle ABC with ∠BCA = 90◦. Let P
be the point on ray AG such that ∠CPA = ∠CAB, and let Q be the point on ray
BG such that ∠CQB = ∠ABC. Prove that the circumcircles of triangles AQG and
BPG meet at a point on side AB.

Solution 1. Since ∠C = 90◦, the point C lies on the semicircle with diameter AB
which implies that, if M is te midpoint of side AB, then MA = MC = MB. This
implies that triangle AMC is isosceles and hence that ∠ACM = ∠A. By definition,
G lies on segment M and it follows that ∠ACG = ∠ACM = ∠A = ∠CPA. This
implies that triangles APC and ACG are similar and hence that AC2 = AG · AP .
Now if D denotes the foot of the perpendicular from C to AB, it follows that triangles
ACD and ABC are similar which implies that AC2 = AD ·AB. Therefore AG·AP =
AC2 = AD·AB and, by power of a point, quadrilateral DGPB is cyclic. This implies
that D lies on the circumcircle of triangle BPG and, by a symmetric argument, it
follows that D also lies on the circumcircle of triangle AGQ. Therefore these two
circumcircles meet at the point D on side AB.

Solution 2. Define D and M as in Solution 1. Let R be the point on side AB
such that AC = CR and triangle ACR is isosceles. Since ∠CRA = ∠A = ∠CPA,
it follows that CPRA is cyclic and hence that ∠GPR = ∠APR = ∠ACR = 180◦ −
2∠A. As in Solution 1, MC = MB and hence ∠GMR = ∠CMB = 2∠A = 180◦ −
∠GPR. Therefore GPRM is cyclic and, by power of a point, AM ·AR = AG ·AP .
Since ACR is isosceles, D is the midpoint of AR and thus, since M is the midpoint
of AB, it follows that AM ·AR = AD ·AB = AG ·AP . Therefore DGPB is cyclic,
implying the result as in Solution 1.



4. Let n be a positive integer. For any positive integer j and positive real number
r, define

fj(r) = min (jr, n) + min

(
j

r
, n

)
, and gj(r) = min (djre, n) + min

(⌈
j

r

⌉
, n

)
,

where dxe denotes the smallest integer greater than or equal to x. Prove that

n∑
j=1

fj(r) ≤ n2 + n ≤
n∑

j=1

gj(r).

Solution 1: We first prove the left hand side inequality. We begin by drawing
an n×n board, with corners at (0, 0), (n, 0), (0, n) and (n, n) on the Cartesian plane.

Consider the line ` with slope r passing through (0, 0). For each j ∈ {1, . . . , n},
consider the point (j, min(jr, n)). Note that each such point either lies on ` or the
top edge of the board. In the jth column from the left, draw the rectangle of height
min(jr, n). Note that the sum of the n rectangles is equal to the area of the board
under the line ` plus n triangles (possibly with area 0) each with width at most 1
and whose sum of the heights is at most n. Therefore, the sum of the areas of these
n triangles is at most n/2. Therefore,

∑n
j=1 min(jr, n) is at most the area of the

square under ` plus n/2.

Consider the line with slope 1/r. By symmetry about the line y = x, the area of
the square under the line with slope 1/r is equal to the area of the square above the
line `. Therefore, using the same reasoning as before,

∑n
j=1 min(j/r, n) is at most

the area of the square above ` plus n/2.

Therefore,
∑n

j=1 fj(r) =
∑n

j=1(min(jr, n) + min( j
r
, n)) is at most the area of the

board plus n, which is n2 + n. This proves the left hand side inequality.

To prove the right hand side inequality, we will use the following lemma:

Lemma: Consider the line ` with slope s passing through (0, 0). Then the num-
ber of squares on the board that contain an interior point below ` is

∑n
j=1 min (djse, n).

Proof of Lemma: For each j ∈ {1, . . . , n}, we count the number of squares in the
jth column (from the left) that contain an interior point lying below the line `. The
line x = j intersect the line ` at (j, js). Hence, since each column contains n squares



total, the number of such squares is min(djse, n). Summing over all j ∈ {1, 2, . . . , n}
proves the lemma. End Proof of Lemma

By the lemma, the rightmost expression of the inequality is equal to the number
of squares containing an interior point below the line with slope r plus the number
of squares containing an interior point below the line with slope 1/r. By symmetry
about the line y = x, the latter number is equal to the number of squares containing
an interior point above the line with slope r. Therefore, the rightmost expression
of the inequality is equal to the number of squares of the board plus the number of
squares of which ` passes through the interior. The former is equal to n2. Hence, to
prove the inequality, it suffices to show that every line passes through the interior of
at least n squares. Since ` has positive slope, each ` passes through either n rows
and/or n columns. In either case, ` passes through the interior of at least n squares.
Hence, the right inequality holds. ¤

Solution 2: We first prove the left inequality. Define the function f(r) =∑n
j=1 fj(r). Note that f(r) = f(1/r) for all r > 0. Therefore, we may assume

that r ≥ 1.

Let m = bn/rc, where bxc denotes the largest integer less than or equal to x. Then
min(jr, n) = jr for all j ∈ {1, . . . ,m} and min(jr, n) = n for all j ∈ {m + 1, . . . , n}.
Note that since r ≥ 1, min(j/r, n) ≤ n for all j ∈ {1, . . . , n}. Therefore,

f(r) =
n∑

j=1

fj(r) = (1 + 2 + . . . m)r + (n−m)n + (1 + 2 + . . . + n) · 1

r

=
m(m + 1)

2
· r +

n(n + 1)

2
· 1

r
+ n(n−m) (1)

Then by (??), note that f(r) ≤ n2 + n if and only if

m(m + 1)r

2
+

n(n + 1)

2r
≤ n(m + 1)

if and only if
m(m + 1)r2 + n(n + 1) ≤ 2rn(m + 1) (2)

Since m = bn/rc, there exist a real number b satisfying 0 ≤ b < r such that
n = mr + b. Substituting this into (??) yields

m(m + 1)r2 + (mr + b)(mr + b + 1) ≤ 2r(mr + b)(m + 1),



if and only if

2m2r2 + mr2 + (2mb + m)r + b2 + b ≤ 2m2r2 + 2mr2 + 2mbr + 2br,

which simplifies to mr + b2 + b ≤ mr2 + 2br ⇔ b(b + 1 − 2r) ≤ mr(r − 1) ⇔
b((b− r) + (1− r)) ≤ mr(r − 1). This is true since

b((b− r) + (1− r)) ≤ 0 ≤ mr(r − 1),

which holds since r ≥ 1 and b < r. Therefore, the left inequality holds.

We now prove the right inequality. Define the function g(r) =
∑n

j=1 = gj(r).
Note that g(r) = g(1/r) for all r > 0. Therefore, we may assume that r ≥ 1. We
will consider two cases; r ≥ n and 1 ≤ r < n.

If r ≥ n, then min(djre, n) = n and min(dj/re, n) = 1 for all j ∈ {1, . . . , n}.
Hence, gj(r) = n + 1 for all j ∈ {1, . . . , n}. Therefore, g(r) = n(n + 1) = n2 + n,
implying that the inequality is true.

Now we consider the case 1 ≤ r < n. Let m = bn/rc. Hence, jr ≤ n for all
j ∈ {1, . . . , m}, i.e. min(djr, e, n) = djre and jr ≥ n for all j ∈ {m + 1, . . . , n}, i.e.
min(djre, n) = n. Therefore,

n∑
j=1

min(djre, n) =
m∑

j=1

djre+ (n−m)n. (3)

We will now consider the second sum
∑n

j=1 min{dj/re, n}.

Since r ≥ 1, min(dj/re, n) ≤ min(dn/re, n) ≤ n. Therefore, min(dj/re, n) =
dj/re. Since m = bn/rc, dn/re ≤ m + 1. Since r > 1, m < n, which implies that
m+1 ≤ n. Therefore, min{dj/re, n} = dj/re ≤ dn/re ≤ m+1 for all j ∈ {1, . . . , n}.

For each positive integer k ∈ {1, . . . , m + 1}, we now determine the number of
positive integers j ∈ {1, . . . , n} such that dj/re = k. We denote this number by sk.

Note that dj/re = k if and only if k − 1 < j/r ≤ k if and only if (k − 1)r < j ≤
min(kr, n), since j ≤ n. We will handle the cases k ∈ {1, . . . , m} and k = m + 1
separately. If k ∈ {1, . . . , m}, then min(kr, n) = kr, since r ≤ m and m = bn/rc.



The set of positive integers j satisfying (k − 1)r < j ≤ kr is {b(k − 1)rc + 1, b(k −
1)rc+ 2, . . . , bkrc}. Hence,

sk = brkc − (br(k − 1)c+ 1) + 1 = brkc − br(k − 1)c

for all k ∈ {1, . . . ,m}. If k = m + 1, then (k − 1)r < j ≤ min(kr, n) = n. The set
of positive integers j satisfying (k − 1)r < j ≤ kr is {b(k − 1)rc + 1, . . . , n}. Then
sm+1 = n − br(k − 1)c = n − bmrc. Note that this number is non-negative by the
definition of m. Therefore, by the definition of sk, we have

n∑
j=1

min

(⌈
j

r

⌉
, n

)
=

m+1∑

k=1

ksk

=
m∑

k=1

(k (bkrc − b(k − 1)rc)) + (m + 1)(n− brmc) = (m + 1)n−
m∑

k=1

bkrc.

(4)

Summing (??) and (??) yields that

g(r) = n2 + n +
m∑

j=1

(djre − bjrc) ≥ n2 + n,

which proves the right inequality. ¤



5. Let O denote the circumcentre of an acute-angled triangle ABC. A circle Γ
passing through vertex A intersects segments AB and AC at points P and Q such
that ∠BOP = ∠ABC and ∠COQ = ∠ACB. Prove that the reflection of BC in the
line PQ is tangent to Γ.

Solution. Let the circumcircle of triangle OBP intersect side BC at the points R
and B and let ∠A, ∠B and ∠C denote the angles at vertices A, B and C, respectively.

Now note that since ∠BOP = ∠B and ∠COQ = ∠C, it follows that

∠POQ = 360◦−∠BOP−∠COQ−∠BOC = 360◦−(180−∠A)−2∠A = 180◦−∠A.

This implies that APOQ is a cyclic quadrilateral. Since BPOR is cyclic,

∠QOR = 360◦−∠POQ−∠POR = 360◦− (180◦−∠A)− (180◦−∠B) = 180◦−∠C.

This implies that CQOR is a cyclic quadrilateral. Since APOQ and BPOR are
cyclic,

∠QPR = ∠QPO + ∠OPR = ∠OAQ + ∠OBR = (90◦ − ∠B) + (90◦ − ∠A) = ∠C.

Since CQOR is cyclic, ∠QRC = ∠COQ = ∠C = ∠QPR which implies that the
circumcircle of triangle PQR is tangent to BC. Further, since ∠PRB = ∠BOP =
∠B,

∠PRQ = 180◦ − ∠PRB − ∠QRC = 180◦ − ∠B − ∠C = ∠A = ∠PAQ.

This implies that the circumcircle of PQR is the reflection of Γ in line PQ. By
symmetry in line PQ, this implies that the reflection of BC in line PQ is tangent to
Γ.


