
1. Let x, y and z be positive real numbers. Show that x2 + xy2 + xyz2 ≥ 4xyz − 4.

Solution. Note that

x2 ≥ 4x− 4, y2 ≥ 4y − 4, and z2 ≥ 4z − 4,

and therefore

x2 + xy2 + xyz2 ≥ (4x− 4) + x(4y − 4) + xy(4z − 4) = 4xyz − 4.

2. For any positive integers n and k, let L(n, k) be the least common multiple of the
k consecutive integers n, n + 1, . . . , n + k − 1. Show that for any integer b, there
exist integers n and k such that L(n, k) > bL(n + 1, k).

Solution. I. Let p > b be prime, let n = p3 and k = p2. If p3 < i < p3 + p2, then no
power of p greater than 1 divides i, while p divides p3 + p. It follows that L(p3, p2) =
p2L(p3+1, p2−1). A similar calculation shows that L(p3+1, p2) = pL(p3+1, p2−1).
Thus L(p3, p2) = pL(p3 + 1, p2) > bL(p3 + 1, p2).

II. Let m > 1. Then L(m!−1,m+1) is the least common multiple of the integers from
m!−1 to m!+m−1. But m!−1 is relatively prime to all of m!,m!+1, . . . ,m!+m−1. It
follows that L(m!−1,m+1) = (m!−1)M , where M = lcm(m!,m!+1, . . . ,m!+m−1).

Now consider L(m!,m+1). This is lcm(M,m!+m). But m!+m = m((m−1)!+1),
and m divides M . Thus lcm(M,m! + m) ≤M((m− 1)! + 1), and

L(m!− 1,m + 1)

L(m!,m + 1)
≥ m!− 1

(m− 1)! + 1
.

Since m can be arbitrarily large, so can L(m! − 1,m + 1)/L(m!,m + 1). Therefore
taking n = m!− 1 for sufficiently large m, and k = m + 1, works.

3. Let ABCD be a convex quadrilateral and let P be the point of intersection of
AC and BD. Suppose that AC + AD = BC + BD. Prove that the internal angle
bisectors of ∠ACB, ∠ADB, and ∠APB meet at a common point.

Solution. I. Construct A′ on CA so that AA′ = AD and B′ on CB such that
BB′ = BD. Then we have three angle bisectors that correspond to the perpendicular
bisectors of A′B′, A′D, and B′D. These perpendicular bisectors are concurrent, so
the angle bisectors are also concurrent. This tells us that the external angle bisectors
at A and B meet at the excentre of PDB. A symmetric argument for C finishes the
problem.
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II. Note that the angle bisectors ∠ACB and ∠APB intersect at the excentres of
4PBC opposite C and the angle bisectors of ∠ADB and ∠APB intersect at the
excentres of 4PAD opposite D. Hence, it suffices to prove that these two excentres
coincide.

Let the excircle of 4PBC opposite C touch side PB at a point X, line CP at a
point Y and line CB at a point Z. Hence, CY = CZ, PX = PY and BX = BZ.
Therefore, CP + PX = CB + BX. Since CP + PX + CB + BX is the perimeter
of 4CBP , CP + PX = CB + BX = s, where s is the semi-perimeter of 4CBP .
Therefore,

PX = CB + BX − CP =
s

2
− CP =

CB + BP + PC

2
− CP =

CB + BP − PC

2
.

Similarly, if we let the excircle of 4PAD opposite D touch side PA at a point
X ′, then

PX ′ =
DA + AP − PD

2
.

Since both excircles are tangent to AC and BD, if we show that PX = PX ′,
then we would show that the two excircles are tangent to AC and BD at the same
points, i.e. the two excircles are identical. Hence, the two excentres coincide.

We will use the fact that AC +AD = BC +BD to prove that PX = PX ′. Since
AC+AD = BC+BD, AP +PC+AD = BC+BP +PD. Hence, AP +AD−PD =
BC + BP − PC. Therefore, PX = PX ′, as desired.

4. A number of robots are placed on the squares of a finite, rectangular grid of
squares. A square can hold any number of robots. Every edge of each square of the
grid is classified as either passable or impassable. All edges on the boundary of the
grid are impassable.

You can give any of the commands up, down, left, or right. All of the robots
then simultaneously try to move in the specified direction. If the edge adjacent to
a robot in that direction is passable, the robot moves across the edge and into the
next square. Otherwise, the robot remains on its current square. You can then give
another command of up, down, left, or right, then another, for as long as you want.

Suppose that for any individual robot, and any square on the grid, there is a
finite sequence of commands that will move that robot to that square. Prove that
you can also give a finite sequence of commands such that all of the robots end up
on the same square at the same time.

Solution. We will prove any two robots can be moved to the same square. From
that point on, they will always be on the same square. We can then similarly move
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a third robot onto the same square as these two, and then a fourth, and so on, until
all robots are on the same square.

Towards that end, consider two robots A and B. Let d(A,B) denote the mini-
mum number of commands that need to be given in order to move A to the square
on which B is currently standing. We will give a procedure that is guaranteed to de-
crease d(A,B). Since d(A,B) is a non-negative integer, this procedure will eventually
decrease n to 0, which finishes the proof.

Let n = d(A,B), and let S = {s1, s2, . . . , sn} be a minimum sequence of moves
that takes A to the square where B is currently standing. Certainly A will not run
into an impassable edge during this sequence, or we could get a shorter sequence by
removing that command. Now suppose B runs into an impassable edge after some
command si. From that point, we can get A to the square on which B started with
the commands si+1, si+2, . . . , sn and then to the square where B is currently with
the commands s1, s2, . . . , si−1. But this was only n − 1 commands in total, and so
we have decreased d(A,B) as required.

Otherwise, we have given a sequence of n commands to A and B, and neither
ran into an impassable edge during the execution of these commands. In particular,
the vector v connecting A to B on the grid must have never changed. We moved
A to the position B = A + v, and therefore we must have also moved B to B + v.
Repeating this process k times, we will move A to A + kv and B to B + kv. But if
v 6= (0, 0), this will eventually force B off the edge of the grid, giving a contradiction.

5. A bookshelf contains n volumes, labelled 1 to n, in some order. The librarian
wishes to put them in the correct order as follows. The librarian selects a volume
that is too far to the right, say the volume with label k, takes it out, and inserts it
in the k-th position. For example, if the bookshelf contains the volumes 1, 3, 2, 4 in
that order, the librarian could take out volume 2 and place it in the second position.
The books will then be in the correct order 1, 2, 3, 4.

(a) Show that if this process is repeated, then, however the librarian makes the
selections, all the volumes will eventually be in the correct order.
(b) What is the largest number of steps that this process can take?

Solution. (a) If tk is the number of times that volume k is selected, then we have
tk ≤ 1 + (t1 + t2 + · · · + tk−1). This is because volume k must move to the right
between selections, which means some volume was placed to its left. The only way
that can happen is if a lower-numbered volume was selected. This leads to the bound
tk ≤ 2k−1. Furthermore, tn = 0 since the nth volume will never be too far to the
right. Therefore if N is the total number of moves then

N = t1 + t2 + · · ·+ tn−1 ≤ 1 + 2 + · · ·+ 2n−2 = 2n−1 − 1,
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and in particular the process terminates.

(b) Conversely, 2n−1−1 moves are required for the configuration (n, 1, 2, 3, . . . , n−1)
if the librarian picks the rightmost eligible volume each time.

This can be proved by induction: if at a certain stage we are at (x, n − k, n −
k + 1, . . . , n − 1), then after 2k − 1 moves, we will have moved to (n − k, n − k +
1, . . . , n − 1, x) without touching any of the volumes further to the left. Indeed,
after 2k−1 − 1 moves, we get to (x, n − k + 1, n − k + 2, . . . , n − 1, n − k), which
becomes (n − k, x, n − k + 1, n − k + 2, . . . , n − 1) after 1 more move, and then
(n − k, n − k + 1, . . . , n − 1, x) after another 2k−1 − 1 moves. The result follows by
taking k = n− 1.
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