
CANADIAN MATHEMATICAL OLYMPIAD 2010
PROBLEMS AND SOLUTIONS

(1) For a positive integer n, an n-staircase is a figure consisting of unit squares, with
one square in the first row, two squares in the second row, and so on, up to n
squares in the nth row, such that all the left-most squares in each row are aligned
vertically. For example, the 5-staircase is shown below.

Let f(n) denote the minimum number of square tiles required to tile the n-
staircase, where the side lengths of the square tiles can be any positive integer.
For example, f(2) = 3 and f(4) = 7.

(a) Find all n such that f(n) = n.
(b) Find all n such that f(n) = n+ 1.

Solution. (a) A diagonal square in an n-staircase is a unit square that lies on
the diagonal going from the top-left to the bottom-right. A minimal tiling of an
n-staircase is a tiling consisting of f(n) square tiles.

Observe that f(n) ≥ n for all n. There are n diagonal squares in an n-staircase,
and a square tile can cover at most one diagonal square, so any tiling requires at
least n square tiles. In other words, f(n) ≥ n. Hence, if f(n) = n, then each
square tile covers exactly one diagonal square.

Let n be a positive integer such that f(n) = n, and consider a minimal tiling of
an n-staircase. The only square tile that can cover the unit square in the first row
is the unit square itself.

Now consider the left-most unit square in the second row. The only square tile
that can cover this unit square and a diagonal square is a 2× 2 square tile.
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Next, consider the left-most unit square in the fourth row. The only square tile
that can cover this unit square and a diagonal square is a 4× 4 square tile.

Continuing this construction, we see that the side lengths of the square tiles
we encounter will be 1, 2, 4, and so on, up to 2k for some nonnegative integer k.
Therefore, n, the height of the n-staircase, is equal to 1+2+4+ · · ·+2k = 2k+1−1.
Alternatively, n = 2k − 1 for some positive integer k. Let p(k) = 2k − 1.

Conversely, we can tile a p(k)-staircase with p(k) square tiles recursively as
follows: We have that p(1) = 1, and we can tile a 1-staircase with 1 square tile.
Assume that we can tile a p(k)-staircase with p(k) square tiles for some positive
integer k.

Consider a p(k + 1)-staircase. Place a 2k × 2k square tile in the bottom left
corner. Note that this square tile covers a digaonal square. Then p(k + 1)− 2k =
2k+1 − 1− 2k = 2k − 1 = p(k), so we are left with two p(k)-staircases.

2k

2k

p(k)

p(k)

Furthermore, these two p(k)-staircases can be tiled with 2p(k) square tiles, which
means we use 2p(k) + 1 = p(k + 1) square tiles.

Therefore, f(n) = n if and only if n = 2k − 1 = p(k) for some positive integer
k. In other words, the binary representation of n consists of all 1s, with no 0s.

(b) Let n be a positive integer such that f(n) = n+ 1, and consider a minimal
tiling of an n-staircase. Since there are n diagonal squares, every square tile
except one covers a diagonal square. We claim that the square tile that covers
the bottom-left unit square must be the square tile that does not cover a diagonal
square.

If n is even, then this fact is obvious, because the square tile that covers the
bottom-left unit square cannot cover any diagonal square, so assume that n is odd.
Let n = 2m+ 1. We may assume that n > 1, so m ≥ 1. Suppose that the square
tile covering the bottom-left unit square also covers a diagonal square. Then the
side length of this square tile must be m+ 1. After this (m+ 1)× (m+ 1) square
tile has been placed, we are left with two m-staircases.
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Hence, f(n) = 2f(m) + 1. But 2f(m) + 1 is odd, and n + 1 = 2m + 2 is even,
so f(n) cannot be equal to n + 1, contradiction. Therefore, the square tile that
covers the bottom-left unit square is the square tile that does not cover a diagonal
square.

Let t be the side length of the square tile covering the bottom-left unit square.
Then every other square tile must cover a diagonal square, so by the same con-
struction as in part (a), n = 1 + 2 + 4 + · · ·+ 2k−1 + t = 2k + t−1 for some positive
integer k. Furthermore, the top p(k) = 2k−1 rows of the n-staircase must be tiled
the same way as the minimal tiling of a p(k)-staircase. Therefore, the horizontal
line between rows p(k) and p(k) + 1 does not pass through any square tiles. Let
us call such a line a fault line. Similarly, the vertical line between columns t and
t+ 1 is also a fault line. These two fault lines partition two p(k)-staircases.

t

t

p(k)

p(k)

If these two p(k)-staircases do not overlap, then t = p(k), so n = 2p(k). For
example, the minimal tiling for n = 2p(2) = 6 is shown below.

Hence, assume that the two p(k)-staircases do overlap. The intersection of the
two p(k)-staircases is a [p(k) − t]-staircase. Since this [p(k) − t]-staircase is tiled
the same way as the top p(k) − t rows of a minimal tiling of a p(k)-staircase,
p(k)− t = p(l) for some positive integer l < k, so t = p(k)− p(l). Then

n = t+ p(k) = 2p(k)− p(l).

Since p(0) = 0, we can summarize by saying that n must be of the form

n = 2p(k)− p(l) = 2k+1 − 2l − 1,
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where k is a positive integer and l is a nonnegative integer. Also, our argument
shows how if n is of this form, then an n-staircase can be tiled with n + 1 square
tiles.

Finally, we observe that n is of this form if and only if the binary representation
of n contains exactly one 0:

2k+1 − 2l − 1 = 11 . . . 1︸ ︷︷ ︸
k − l 1s

0 11 . . . 1︸ ︷︷ ︸
l 1s

.

�

(2) Let A,B, P be three points on a circle. Prove that if a and b are the distances
from P to the tangents at A and B and c is the distance from P to the chord AB,
then c2 = ab.

Solution. Let r be the radius of the circle, and let a’ and b’ be the respective
lengths of PA and PB. Since b′ = 2r sin∠PAB = 2rc/a′, c = a′b′/(2r). Let AC
be the diameter of the circle and H the foot of the perpendicular from P to AC.
The similarity of the triangles ACP and APH imply that AH : AP = AP : AC
or (a′)2 = 2ra. Similarly, (b′)2 = 2rb. Hence

c2 =
(a′)2

2r

(b′)2

2r
= ab

as desired. �

Alternate Solution. Let E,F,G be the feet of the perpendiculars to the
tangents at A and B and the chord AB, respectively. We need to show that
PE : PG = PG : GF , where G is the foot of the perpendicular from P to AB.
This suggest that we try to prove that the triangles EPG and GPF are similar.

Since PG is parallel to the bisector of the angle between the two tangents,
∠EPG = ∠FPG. Since AEPG and BFPG are concyclic quadrilaterals (having
opposite angles right), ∠PGE = ∠PAE and ∠PFG = ∠PBG. But ∠PAE =
∠PBA = ∠PBG, whence ∠PGE = ∠PFG. Therefore triangles EPG and GPF
are similar.

The argument above with concyclic quadrilaterals only works when P lies on
the shorter arc between A and B. The other case can be proved similarly. �

(3) Three speed skaters have a friendly race on a skating oval. They all start from
the same point and skate in the same direction, but with different speeds that
they maintain throughout the race. The slowest skater does 1 lap a minute, the
fastest one does 3.14 laps a minute, and the middle one does L laps a minute for
some 1 < L < 3.14. The race ends at the moment when all three skaters again
come together to the same point on the oval (which may differ from the starting
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point.) Find how many different choices for L are there such that 117 passings
occur before the end of the race. (A passing is defined when one skater passes
another one. The beginning and the end of the race when all three skaters are at
together are not counted as a passing.)

Solution. Assume that the length of the oval is one unit. Let x(t) be the
difference of distances that the slowest and the fastest skaters have skated by time
t. Similarly, let y(t) be the difference between the middle skater and the slowest
skater. The path (x(t), y(t)) is a straight ray R in R2, starting from the origin,
with slope depending on L. By assumption, 0 < y(t) < x(t).

One skater passes another one when either x(t) ∈ Z, y(t) ∈ Z or x(t)−y(t) ∈ Z.
The race ends when both x(t), y(t) ∈ Z.

Let (a, b) ∈ Z2 be the endpoint of the ray R. We need to find the number of
such points satisfying:
(a) 0 < b < a
(b) The ray R intersects Z2 at endpoints only.
(c) The ray R crosses 357 times the lines x ∈ Z, y ∈ Z, y − x ∈ Z.

The second condition says that a and b are relatively prime. The ray R crosses
a−1 of the lines x ∈ Z, b−1 of the lines y ∈ Z and a− b−1 of the lines x−y ∈ Z.
Thus, we need (a− 1) + (b− 1) + (a− b− 1) = 117, or equivalently, 2a− 3 = 117.
That is a = 60.

Now b must be a positive integer less than and relatively prime to 60. The
number of such b can be found using the Euler’s φ function:

φ(60) = φ(22 · 3 · 5) = (2− 1) · 2 · (3− 1) · (5− 1) = 16.

Thus the answer is 16. �

Alternate Solution. First, let us name our skaters. From fastest to slowest,
call them: A, B and C. (Abel, Bernoulli and Cayley?)

Now, it is helpful to consider the race from the viewpoint of C. Relative to C,
both A and B complete a whole number of laps, since they both start and finish
at C.

Let n be the number of laps completed by A relative to C, and let m be the
number of laps completed by B relative to C. Note that: n > m ∈ Z+

Consider the number of minutes required to complete the race. Relative to C,
A is moving with a speed of 3.14 − 1 = 2.14 laps per minute and completes the
race in n

2.14
minutes. Also relative to C, B is moving with a speed of (L− 1) laps

per minute and completes the race in m
L−1 minutes. Since A and B finish the race

together (when they both meet C):

n

2.14
=

m

L− 1
⇒ L = 2.14

(m
n

)
+ 1.

Hence, there is a one-to-one relation between values of L and values of the postive
proper fraction m

n
. The fraction should be reduced, that is the pair (m,n) should
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be relatively prime, or else, with k = gcd(m,n), the race ends after n/k laps for
A and m/k laps for B when they first meet C together.

It is also helpful to consider the race from the viewpoint of B. In this frame
of reference, A completes only n −m laps. Hence A passes B only (n −m) − 1
times, since the racers do not ”pass” at the end of the race (nor at the beginning).
Similarily A passes C only n − 1 times and B passes C only m − 1 times. The
total number of passings is:

117 = (n− 1) + (m− 1) + (n−m− 1) = 2n− 3 ⇒ n = 60

Hence the number of values of L equals the number of m for which the fraction m
60

is
positive, proper and reduced. That is the number of positive integer values smaller
than and relatively prime to 60. One could simply count: {1,7,11,13,17,...}, but
Euler’s φ function gives this number:

φ(60) = φ(22 · 3 · 5) = (2− 1) · 2 · (3− 1) · (5− 1) = 16.

Therefore, there are 16 values for L which give the desired number of passings.
Note that the actual values for the speeds of A and C do not affect the result.

They could be any values, rational or irrational, just so long as they are different,
and there will be 16 possible values for the speed of B between them. �

(4) Each vertex of a finite graph can be colored either black or white. Initially all
vertices are black. We are allowed to pick a vertex P and change the color of P
and all of its neighbours. Is it possible to change the colour of every vertex from
black to white by a sequence of operations of this type?

Solution. The answer is yes. Proof by induction on the number n of vertices.
If n = 1, this is obvious. For the induction assumption, suppose we can do this for
any graph with n− 1 vertices for some n ≥ 2 and let X be a graph with n vertices
which we will denote by P1, . . . , Pn+1.

Let us denote the “basic” operation of changing the color of Pi and all of its
neighbours by fi. Removing a vertex Pi from X (along with all edges connecting
to Pi) and applying the induction assumption to the resulting smaller graph, we
see that there exists a sequence of operations gi (obtained by composing some fj,
with j 6= i) which changes the colour of every vertex in X, except for possibly Pi.

If gi it also changes the color of Pi then we are done. So, we may assume that
gi does not change the colour of P for every i = 1, . . . , n. Now consider two cases.

Case 1: n is even. Then composing g1, . . . , gn we will change the color of every
vertex from white to black.

Case 2: n is odd. I claim that in this case X has a vertex with an even number
of neighbours.

Indeed, denote the number of neighbours of Pi (or equivalently, the number of
edges connected to P ) by ki. Then P1 + · · · + Pn+1 = 2e, where e is the number
of edges of X. Thus one of the numbers ki has to be even as claimed.
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After renumbering the vertices, we may assume that P1 has 2k neighbours, say
P2, . . . , P2k+1. The composition of f1 with g1, g2, . . . , g2k+1 will then change the
colour of every vertex, as desired.

�

(5) Let P (x) and Q(x) be polynomials with integer coefficients. Let an = n! + n.
Show that if P (an)/Q(an) is an integer for every n, then P (n)/Q(n) is an integer
for every integer n such that Q(n) 6= 0.

Solution. Imagine dividing P (x) by Q(x). We find that

P (x)

Q(x)
= A(x) +

R(x)

Q(x)
,

where A(x) and R(x) are polynomials with rational coefficients, and R(x) is either
identically 0 or has degree less than the degree of Q(x).

By bringing the coefficients of A(x) to their least common multiple, we can find
a polynomial B(x) with integer coefficients, and a positive integer b, such that
A(x) = B(x)/b. Suppose first that R(x) is not identically 0. Note that for any
integer k, either A(k) = 0, or |A(k)| ≥ 1/b. But whenever |k| is large enough,
0 < |R(k)/Q(k)| < 1/b, and therefore if n is large enough, P (an)/Q(an) cannot
be an integer.

So R(x) is identically 0, and P (x)/Q(x) = B(x)/b (at least whenever Q(x) 6= 0.)
Now let n be an integer. Then there are infinitely many integers k such that

n ≡ ak (mod b). But B(ak)/b is an integer, or equivalently b divides B(ak). It
follows that b divides B(n), and therefore P (n)/Q(n) is an integer. �
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