
Solutions to the 2005 CMO
written March 30, 2005

1. Consider an equilateral triangle of side length n, which is divided into unit triangles, as
shown. Let f(n) be the number of paths from the triangle in the top row to the middle
triangle in the bottom row, such that adjacent triangles in our path share a common
edge and the path never travels up (from a lower row to a higher row) or revisits a
triangle. An example of one such path is illustrated below for n = 5. Determine the
value of f(2005).

Solution

We shall show that f(n) = (n − 1)!.
Label the horizontal line segments in the triangle l1, l2, . . . as in the diagram below.
Since the path goes from the top triangle to a triangle in the bottom row and never
travels up, the path must cross each of l1, l2, . . . , ln−1 exactly once. The diagonal lines
in the triangle divide lk into k unit line segments and the path must cross exactly one
of these k segments for each k. (In the diagram below, these line segments have been
highlighted.) The path is completely determined by the set of n − 1 line segments
which are crossed. So as the path moves from the kth row to the (k + 1)st row,
there are k possible line segments where the path could cross lk. Since there are
1 · 2 · 3 · · · (n− 1) = (n− 1)! ways that the path could cross the n− 1 horizontal lines,
and each one corresponds to a unique path, we get f(n) = (n − 1)!.
Therefore f(2005) = (2004)!.
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2. Let (a, b, c) be a Pythagorean triple, i.e., a triplet of positive integers with a2+b2 = c2.

a) Prove that (c/a+ c/b)2 > 8.

b) Prove that there does not exist any integer n for which we can find a Pythagorean
triple (a, b, c) satisfying (c/a+ c/b)2 = n.

a) Solution 1

Let (a, b, c) be a Pythagorean triple. View a, b as lengths of the legs of a right
angled triangle with hypotenuse of length c; let θ be the angle determined by the
sides with lengths a and c. Then( c

a
+

c

b

)2

=

(
1

cos θ
+

1

sin θ

)2

=
sin2 θ + cos2 θ + 2 sin θ cos θ

(sin θ cos θ)2

= 4

(
1 + sin 2θ

sin2 2θ

)
=

4

sin2 2θ
+

4

sin 2θ

Note that because 0 < θ < 90◦, we have 0 < sin 2θ ≤ 1, with equality only if
θ = 45◦. But then a = b and we obtain

√
2 = c/a, contradicting a, c both being

integers. Thus, 0 < sin 2θ < 1 which gives (c/a+ c/b)2 > 8.

Solution 2

Defining θ as in Solution 1, we have c/a + c/b = sec θ + csc θ. By the AM-GM
inequality, we have (sec θ + csc θ)/2 ≥ √

sec θ csc θ. So

c/a+ c/b ≥ 2√
sin θ cos θ

=
2
√
2√

sin 2θ
≥ 2

√
2.

Since a, b, c are integers, we have c/a+ c/b > 2
√
2 which gives (c/a+ c/b)2 > 8.

Solution 3

By simplifying and using the AM-GM inequality,( c

a
+

c

b

)2

= c2

(
a+ b

ab

)2

=
(a2 + b2)(a+ b)2

a2b2
≥ 2

√
a2b2 (2

√
ab)2

a2b2
= 8,

with equality only if a = b. By using the same argument as in Solution 1, a cannot
equal b and the inequality is strict.

Solution 4( c
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+
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+
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2(a − b)2

ab
+ 4 ≥ 8,

with equality only if a = b, which (as argued previously) cannot occur.



b) Solution 1

Since c/a + c/b is rational, (c/a + c/b)2 can only be an integer if c/a + c/b is an
integer. Suppose c/a + c/b = m. We may assume that gcd(a, b) = 1. (If not,
divide the common factor from (a, b, c), leaving m unchanged.)

Since c(a+b) = mab and gcd(a, a+b) = 1, a must divide c, say c = ak. This gives
a2 + b2 = a2k2 which implies b2 = (k2 − 1)a2. But then a divides b contradicting
the fact that gcd(a, b) = 1. Therefore (c/a+ c/b)2 is not equal to any integer n.

Solution 2

We begin as in Solution 1, supposing that c/a + c/b = m with gcd(a, b) = 1.
Hence a and b are not both even. It is also the case that a and b are not both
odd, for then c2 = a2 + b2 ≡ 2 (mod 4), and perfect squares are congruent to
either 0 or 1 modulo 4. So one of a, b is odd and the other is even. Therefore
c must be odd.

Now c/a+ c/b = m implies c(a+ b) = mab, which cannot be true because c(a+ b)
is odd and mab is even.



3. Let S be a set of n ≥ 3 points in the interior of a circle.
a) Show that there are three distinct points a, b, c ∈ S and three distinct points

A,B,C on the circle such that a is (strictly) closer to A than any other point in
S, b is closer to B than any other point in S and c is closer to C than any other
point in S.

b) Show that for no value of n can four such points in S (and corresponding points
on the circle) be guaranteed.

Solution 1

a) Let H be the smallest convex set of points in the plane which contains S.† Take
3 points a, b, c ∈ S which lie on the boundary of H. (There must always be at
least 3 (but not necessarily 4) such points.)

Since a lies on the boundary of the convex region H, we can construct a chord L
such that no two points of H lie on opposite sides of L. Of the two points where
the perpendicular to L at a meets the circle, choose one which is on a side of L
not containing any points of H and call this point A. Certainly A is closer to a
than to any other point on L or on the other side of L. Hence A is closer to a
than to any other point of S. We can find the required points B and C in an
analogous way and the proof is complete.

[Note that this argument still holds if all the points of S lie on a line.]
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b) Let PQR be an equilateral triangle inscribed in the circle and let a, b, c be mid-
points of the three sides of �PQR. If r is the radius of the circle, then every
point on the circle is within (

√
3/2)r of one of a, b or c. (See figure (b) above.)

Now
√
3/2 < 9/10, so if S consists of a, b, c and a cluster of points within r/10 of

the centre of the circle, then we cannot select 4 points from S (and corresponding
points on the circle) having the desired property.

†By the way, H is called the convex hull of S. If the points of S lie on a line, then H will be the shortest
line segment containing the points of S. Otherwise, H is a polygon whose vertices are all elements of S and
such that all other points in S lie inside or on this polygon.



Solution 2

a) If all the points of S lie on a line L, then choose any 3 of them to be a, b, c. Let
A be a point on the circle which meets the perpendicular to L at a. Clearly A is
closer to a than to any other point on L, and hence closer than other other point
in S. We find B and C in an analogous way.

Otherwise, choose a, b, c from S so that the triangle formed by these points has
maximal area. Construct the altitude from the side bc to the point a and extend
this line until it meets the circle at A. We claim that A is closer to a than to any
other point in S.

Suppose not. Let x be a point in S for which the distance from A to x is less than
the distance from A to a. Then the perpendicular distance from x to the line bc
must be greater than the perpendicular distance from a to the line bc. But then
the triangle formed by the points x, b, c has greater area than the triangle formed
by a, b, c, contradicting the original choice of these 3 points. Therefore A is closer
to a than to any other point in S.

The points B and C are found by constructing similar altitudes through b and c,
respectively.

b) See Solution 1.



4. Let ABC be a triangle with circumradius R, perimeter P and area K. Determine the
maximum value of KP/R3.

Solution 1

Since similar triangles give the same value of KP/R3, we can fix R = 1 and maximize
KP over all triangles inscribed in the unit circle. Fix points A and B on the unit circle.
The locus of points C with a given perimeter P is an ellipse that meets the circle in at
most four points. The area K is maximized (for a fixed P ) when C is chosen on the
perpendicular bisector of AB, so we get a maximum value for KP if C is where the
perpendicular bisector of AB meets the circle. Thus the maximum value of KP for
a given AB occurs when ABC is an isosceles triangle. Repeating this argument with
BC fixed, we have that the maximum occurs when ABC is an equilateral triangle.

Consider an equilateral triangle with side length a. It has P = 3a. It has height equal
to a

√
3/2 giving K = a2

√
3/4. ¿From the extended law of sines, 2R = a/ sin(60) giving

R = a/
√
3. Therefore the maximum value we seek is

KP/R3 =

(
a2
√
3

4

)
(3a)

(√
3

a

)3

=
27

4
.

Solution 2

From the extended law of sines, the lengths of the sides of the triangle are 2R sinA,
2R sinB and 2R sinC. So

P = 2R(sinA+ sinB + sinC) and K =
1

2
(2R sinA)(2R sinB)(sinC),

giving
KP

R3
= 4 sinA sinB sinC(sinA+ sinB + sinC).

We wish to find the maximum value of this expression over all A + B + C = 180◦.
Using well-known identities for sums and products of sine functions, we can write

KP

R3
= 4 sinA

(
cos(B − C)

2
− cos(B + C)

2

)(
sinA+ 2 sin

(
B + C

2

)
cos

(
B − C

2

))
.

If we first consider A to be fixed, then B + C is fixed also and this expression takes
its maximum value when cos(B − C) and cos

(
B−C

2

)
equal 1; i.e. when B = C. In a

similar way, one can show that for any fixed value of B, KP/R3 is maximized when
A = C. Therefore the maximum value of KP/R3 occurs when A = B = C = 60◦,
and it is now an easy task to substitute this into the above expression to obtain the
maximum value of 27/4.



Solution 3

As in Solution 2, we obtain

KP

R3
= 4 sinA sinB sinC(sinA+ sinB + sinC).

From the AM-GM inequality, we have

sinA sinB sinC ≤
(
sinA+ sinB + sinC

3

)3

,

giving
KP

R3
≤ 4

27
(sinA+ sinB + sinC)4,

with equality when sinA = sinB = sinC. Since the sine function is concave on the
interval from 0 to π, Jensen’s inequality gives

sinA+ sinB + sinC

3
≤ sin

(
A+B + C

3

)
= sin

π

3
=

√
3

2
.

Since equality occurs here when sinA = sinB = sinC also, we can conclude that the

maximum value of KP/R3 is 4
27

(
3
√

3
2

)4

= 27/4.



5. Let’s say that an ordered triple of positive integers (a, b, c) is n-powerful if a ≤ b ≤ c,
gcd(a, b, c) = 1, and an + bn + cn is divisible by a + b + c. For example, (1, 2, 2) is
5-powerful.

a) Determine all ordered triples (if any) which are n-powerful for all n ≥ 1.
b) Determine all ordered triples (if any) which are 2004-powerful and 2005-powerful,
but not 2007-powerful.

[Note that gcd(a, b, c) is the greatest common divisor of a, b and c.]

Solution 1

Let Tn = an + bn + cn and consider the polynomial

P (x) = (x − a)(x − b)(x − c) = x3 − (a+ b+ c)x2 + (ab+ ac+ bc)x − abc.

Since P (a) = 0, we get a3 = (a+ b+ c)a2 − (ab+ ac+ bc)a+ abc and multiplying both
sides by an−3 we obtain an = (a+ b+ c)an−1− (ab+ac+ bc)an−2+(abc)an−3. Applying
the same reasoning, we can obtain similar expressions for bn and cn and adding the
three identities we get that Tn satisfies the following 3-term recurrence:

Tn = (a+ b+ c)Tn−1 − (ab+ ac+ bc)Tn−2 + (abc)Tn−3, for all n ≥ 3.
¿From this we see that if Tn−2 and Tn−3 are divisible by a+ b+ c, then so is Tn. This
immediately resolves part (b)—there are no ordered triples which are 2004-powerful
and 2005-powerful, but not 2007-powerful—and reduces the number of cases to be
considered in part (a): since all triples are 1-powerful, the recurrence implies that any
ordered triple which is both 2-powerful and 3-powerful is n-powerful for all n ≥ 1.
Putting n = 3 in the recurrence, we have

a3 + b3 + c3 = (a+ b+ c)(a2 + b2 + c2)− (ab+ ac+ bc)(a+ b+ c) + 3abc

which implies that (a, b, c) is 3-powerful if and only if 3abc is divisible by a + b + c.
Since

a2 + b2 + c2 = (a+ b+ c)2 − 2(ab+ ac+ bc),

(a, b, c) is 2-powerful if and only if 2(ab+ ac+ bc) is divisible by a+ b+ c.

Suppose a prime p ≥ 5 divides a+ b+ c. Then p divides abc. Since gcd(a, b, c) = 1, p
divides exactly one of a, b or c; but then p doesn’t divide 2(ab+ ac+ bc).

Suppose 32 divides a+ b+ c. Then 3 divides abc, implying 3 divides exactly one of a,
b or c. But then 3 doesn’t divide 2(ab+ ac+ bc).

Suppose 22 divides a + b + c. Then 4 divides abc. Since gcd(a, b, c) = 1, at most one
of a, b or c is even, implying one of a, b, c is divisible by 4 and the others are odd. But
then ab+ ac+ bc is odd and 4 doesn’t divide 2(ab+ ac+ bc).

So if (a, b, c) is 2- and 3-powerful, then a+ b+ c is not divisible by 4 or 9 or any prime
greater than 3. Since a + b + c is at least 3, a + b + c is either 3 or 6. It is now a
simple matter to check the possibilities and conclude that the only triples which are
n-powerful for all n ≥ 1 are (1, 1, 1) and (1, 1, 4).



Solution 2

Let p be a prime. By Fermat’s Little Theorem,

ap−1 ≡
{
1 (mod p), if p doesn’t divide a;
0 (mod p), if p divides a.

Since gcd(a, b, c) = 1, we have that ap−1+ bp−1+ cp−1 ≡ 1, 2 or 3 (mod p). Therefore if
p is a prime divisor of ap−1+bp−1+cp−1, then p equals 2 or 3. So if (a, b, c) is n-powerful
for all n ≥ 1, then the only primes which can divide a+ b+ c are 2 or 3.

We can proceed in a similar fashion to show that a+ b+ c is not divisible by 4 or 9.

Since

a2 ≡
{
0 (mod 4), if p is even;
1 (mod 4), if p is odd

and a, b, c aren’t all even, we have that a2 + b2 + c2 ≡ 1, 2 or 3 (mod 4).
By expanding (3k)3, (3k + 1)3 and (3k + 2)3, we find that a3 is congruent to 0, 1 or
−1 modulo 9. Hence

a6 ≡
{
0 (mod 9), if 3 divides a;
1 (mod 9), if 3 doesn’t divide a.

Since a, b, c aren’t all divisible by 3, we have that a6 + b6 + c6 ≡ 1, 2 or 3 (mod 9).
So a2+ b2+ c2 is not divisible by 4 and a6+ b6+ c6 is not divisible by 9. Thus if (a, b, c)
is n-powerful for all n ≥ 1, then a+ b+ c is not divisible by 4 or 9. Therefore a+ b+ c
is either 3 or 6 and checking all possibilities, we conclude that the only triples which
are n-powerful for all n ≥ 1 are (1, 1, 1) and (1, 1, 4).
See Solution 1 for the (b) part.


