The 2019 Canadian Mathematical Olympiad

A competition of the Canadian Mathematical Society and supported by the Actuarial Profession.

SOCIETY OF ACTUARIES

A full list of our competition sponsors and partners is available online at https://cms.math.ca/Competitions/Sponsors/

Official Problem Set

1. Amy has drawn three points in a plane, A, B, and C, such that $A B=B C=C A=6$. Amy is allowed to draw a new point if it is the circumcenter of a triangle whose vertices she has already drawn. For example, she can draw the circumcenter O of triangle $A B C$, and then afterwards she can draw the circumcenter of triangle $A B O$.
(a) Prove that Amy can eventually draw a point whose distance from a previously drawn point is greater than 7 .
(b) Prove that Amy can eventually draw a point whose distance from a previously drawn point is greater than 2019.
(Recall that the circumcenter of a triangle is the center of the circle that passes through its three vertices.)
2. Let a and b be positive integers such that $a+b^{3}$ is divisible by $a^{2}+3 a b+3 b^{2}-1$. Prove that $a^{2}+3 a b+3 b^{2}-1$ is divisible by the cube of an integer greater than 1 .
3. Let m and n be positive integers. A $2 m \times 2 n$ grid of squares is coloured in the usual chessboard fashion. Find the number of ways of placing $m n$ counters on the white squares, at most one counter per square, so that no two counters are on white squares that are diagonally adjacent. An example of a way to place the counters when $m=2$ and $n=3$ is shown below.

The 2019 Canadian Mathematical Olympiad

4. Let n be an integer greater than 1 , and let $a_{0}, a_{1}, \ldots, a_{n}$ be real numbers with $a_{1}=$ $a_{n-1}=0$. Prove that for any real number k,

$$
\left|a_{0}\right|-\left|a_{n}\right| \leq \sum_{i=0}^{n-2}\left|a_{i}-k a_{i+1}-a_{i+2}\right|
$$

5. David and Jacob are playing a game of connecting $n \geq 3$ points drawn in a plane. No three of the points are collinear. On each player's turn, he chooses two points to connect by a new line segment. The first player to complete a cycle consisting of an odd number of line segments loses the game. (Both endpoints of each line segment in the cycle must be among the n given points, not points which arise later as intersections of segments.) Assuming David goes first, determine all n for which he has a winning strategy.

Important!
Please do not discuss this problem set online for at least 24 hours.

