Sun
 Life Financial

Problems for 2016 CMO - as of Feb 12, 2016

1. The integers $1,2,3, \ldots, 2016$ are written on a board. You can choose any two numbers on the board and replace them with their average. For example, you can replace 1 and 2 with 1.5 , or you can replace 1 and 3 with a second copy of 2 . After 2015 replacements of this kind, the board will have only one number left on it.
(a) Prove that there is a sequence of replacements that will make the final number equal to 2 .
(b) Prove that there is a sequence of replacements that will make the final number equal to 1000 .
2. Consider the following system of 10 equations in 10 real variables v_{1}, \ldots, v_{10} :

$$
v_{i}=1+\frac{6 v_{i}^{2}}{v_{1}^{2}+v_{2}^{2}+\cdots+v_{10}^{2}} \quad(i=1, \ldots, 10)
$$

Find all 10 -tuples $\left(v_{1}, v_{2}, \ldots, v_{10}\right)$ that are solutions of this system.
3. Find all polynomials $P(x)$ with integer coefficients such that $P(P(n)+$ n) is a prime number for infinitely many integers n.
4. Lavaman versus the Flea. Let A, B, and F be positive integers, and assume $A<B<2 A$. A flea is at the number 0 on the number line. The flea can move by jumping to the right by A or by B. Before the flea starts jumping, Lavaman chooses finitely many intervals $\{m+$ $1, m+2, \ldots, m+A\}$ consisting of A consecutive positive integers, and places lava at all of the integers in the intervals. The intervals must be chosen so that:
(i) any two distinct intervals are disjoint and not adjacent;
(ii) there are at least F positive integers with no lava between any two intervals; and
(iii) no lava is placed at any integer less than F.

Prove that the smallest F for which the flea can jump over all the intervals and avoid all the lava, regardless of what Lavaman does, is $F=(n-1) A+B$, where n is the positive integer such that $\frac{A}{n+1} \leq B-A<\frac{A}{n}$.
5. Let $\triangle A B C$ be an acute-angled triangle with altitudes $A D$ and $B E$ meeting at H. Let M be the midpoint of segment $A B$, and suppose that the circumcircles of $\triangle D E M$ and $\triangle A B H$ meet at points P and Q with P on the same side of $C H$ as A. Prove that the lines $E D$, $P H$, and $M Q$ all pass through a single point on the circumcircle of $\triangle A B C$.

