$45^{\text {th }}$ Canadian Mathematical Olympiad

Wednesday, March 27, 2013

1. Determine all polynomials $P(x)$ with real coefficients such that

$$
(x+1) P(x-1)-(x-1) P(x)
$$

is a constant polynomial.
2. The sequence $a_{1}, a_{2}, \ldots, a_{n}$ consists of the numbers $1,2, \ldots, n$ in some order. For which positive integers n is it possible that the $n+1$ numbers $0, a_{1}, a_{1}+a_{2}, a_{1}+a_{2}+a_{3}$, $\ldots, a_{1}+a_{2}+\cdots+a_{n}$ all have different remainders when divided by $n+1$?
3. Let G be the centroid of a right-angled triangle $A B C$ with $\angle B C A=90^{\circ}$. Let P be the point on ray $A G$ such that $\angle C P A=\angle C A B$, and let Q be the point on ray $B G$ such that $\angle C Q B=\angle A B C$. Prove that the circumcircles of triangles $A Q G$ and $B P G$ meet at a point on side $A B$.
4. Let n be a positive integer. For any positive integer j and positive real number r, define $f_{j}(r)$ and $g_{j}(r)$ by

$$
f_{j}(r)=\min (j r, n)+\min \left(\frac{j}{r}, n\right), \quad \text { and } \quad g_{j}(r)=\min (\lceil j r\rceil, n)+\min \left(\left\lceil\frac{j}{r}\right\rceil, n\right),
$$

where $\lceil x\rceil$ denotes the smallest integer greater than or equal to x. Prove that

$$
\sum_{j=1}^{n} f_{j}(r) \leq n^{2}+n \leq \sum_{j=1}^{n} g_{j}(r)
$$

for all positive real numbers r.
5. Let O denote the circumcentre of an acute-angled triangle $A B C$. Let point P on side $A B$ be such that $\angle B O P=\angle A B C$, and let point Q on side $A C$ be such that $\angle C O Q=\angle A C B$. Prove that the reflection of $B C$ in the line $P Q$ is tangent to the circumcircle of triangle $A P Q$.

