37th Canadian Mathematical Olympiad

Wednesday, March 30, 2005

1. Consider an equilateral triangle of side length n, which is divided into unit triangles, as shown. Let $f(n)$ be the number of paths from the triangle in the top row to the middle triangle in the bottom row, such that adjacent triangles in our path share a common edge and the path never travels up (from a lower row to a higher row) or revisits a triangle. An example of one such path is illustrated below for $n=5$. Determine the value of $f(2005)$.

2. Let (a, b, c) be a Pythagorean triple, i.e., a triplet of positive integers with $a^{2}+b^{2}=c^{2}$.
a) Prove that $(c / a+c / b)^{2}>8$.
b) Prove that there does not exist any integer n for which we can find a Pythagorean triple (a, b, c) satisfying $(c / a+c / b)^{2}=n$.
3. Let S be a set of $n \geq 3$ points in the interior of a circle.
a) Show that there are three distinct points $a, b, c \in S$ and three distinct points A, B, C on the circle such that a is (strictly) closer to A than any other point in S, b is closer to B than any other point in S and c is closer to C than any other point in S.
b) Show that for no value of n can four such points in S (and corresponding points on the circle) be guaranteed.
4. Let $A B C$ be a triangle with circumradius R, perimeter P and area K. Determine the maximum value of $K P / R^{3}$.
5. Let's say that an ordered triple of positive integers (a, b, c) is n-powerful if $a \leq b \leq c, \operatorname{gcd}(a, b, c)=1$, and $a^{n}+b^{n}+c^{n}$ is divisible by $a+b+c$. For example, $(1,2,2)$ is 5 -powerful.
a) Determine all ordered triples (if any) which are n-powerful for all $n \geq 1$.
b) Determine all ordered triples (if any) which are 2004-powerful and 2005-powerful, but not 2007powerful.
[Note that $\operatorname{gcd}(a, b, c)$ is the greatest common divisor of a, b and c.]
